1樓:匿名使用者
拋物線y=x^2+2x-3與x軸交於a(-3,0),b(1,0),與y軸交於點c(0,-3).
(2)點b,c在直線x=-2的同側,b關於直線x=-2的對稱點是b'(-5,0),
b'c:y=(-3/5)x-3與直線x=-2交於點d(-2,-9/5),這時
bd+dc=b'd+dc=b'c為最小,
∴a=-9/5.
(3)△abc和△aop中,∠bac=∠oap,ab=4,ac=3√2,ao=3,
∴△abc∽△aop,必須且只需ab/ao=ac/ap,或ab/ap=ac/ao,
∴ap=ao*ac/ab=9√2/4,或ap=ab*ao/ac=2√2,
ac:y=-x-3,p(-3/4,-9/4)或(-1,-2).
2樓:在普陀山吹風的垂絲海棠
2、有題意得a(-3,0),b(1,0),c(0,-3),db+dc最小,則d點在直線lbc的中垂線上,lbc:3x-y-3=0(1)式,lbc中垂線:y=-1/3x-4/3,將d(-2,a)帶入得a=-2/3;
3、三角形aop相似於三角形abc,則bc平行於op,則直線op:y=3x(2)式,由(1)(2)得p(-3/4,-9/4)
3樓:匿名使用者
解:(2)令y=0,得a(-3,0) b(1,0),令x=0,得c(0,-3),由此可得直線bc的方程為y=3x-3,若使db+dc的值最小,只需點d在直線bc上,使b,c,d三點共線即可,於是把y=a,x=-2代入y=3x-3中解得a=-9, 所以當a為-9時,db+dc的值最小.
(3)直線ac的方程為y=-x-3,若使以點a,o,p為頂點的三角形與三角形abc相似,只需直線op與直線bc平行,則直線op的方程為y=3x,聯立方程組y=3x和y=-x-3
解得x=-4分之3,y=-4分之9,於是p點的座標為p(-4分之3,-4分之9)。(說明:p點為與直線bc平行且過點o的直線op與直線ac的交點)
(2014?重慶)如圖,已知拋物線y=-x2+2x+3與x軸交於a,b兩點(點a在點b的左邊),與y軸交於點c,連線bc.
4樓:手機使用者
(1)由拋物線的解析式y=-x2+2x+3,∴c(0,3),
令y=0,-x2+2x+3=0,解得x=3或x=-1;
∴a(-1,0),b(3,0).
(2)設直線bc的解析式為:y=kx+b,則有:
3k+b=0
b=3,解得
k=?1
b=3,
∴直線bc的解析式為:y=-x+3.
設p(x,-x+3),則m(x,-x2+2x+3),∴pm=(-x2+2x+3)-(-x+3)=-x2+3x.∴s△bcm=s△pmc+s△pmb=1
2pm?(xp-xc)+1
2pm?(xb-xp)=1
2pm?(xb-xc)=3
2pm.
∴s△bcm=3
2(-x2+3x)=-3
2(x-3
2)2+278.
∴當x=3
2時,△bcm的面積最大.
此時p(32,3
2),∴pn=on=32,
∴bn=ob-on=3-32=3
2.在rt△bpn中,由勾股定理得:pb=
如圖,已知拋物線y=x^2-2x-3與x軸交於a、b兩點(a在b的左側),與y軸交於c點。 (1)設
5樓:倦島
(1)求出過baic(0,-3),b(3,du0)兩點zhi的直線關係式
過a(-1,0)作bc的平行線,交對dao稱軸x=1於d(1,m),(其實就是將直版線bc向左平移4個單位經過a)求得直線ad的關係式,從而求得d(1,2)因為三角形bcd與三角形acb是等底等高,所以面積相等。
由於直線x=1(也就是對稱軸)與直線cb交於(權1,-2)於是得到d(1,2)關於(1,-2)的對稱點(1,-6)所以 d(1,2)或(1,-6)
6樓:溪水無華
(1)x²-2x-3=0,得
x1=3,x2=﹣1
∴a(﹣1,0),b(3,0),c(0,﹣3)∴拋物線的對稱軸為 x=﹙﹣1+3﹚/2=1設d的座標
62616964757a686964616fe4b893e5b19e31333332393437為(1,b)
△acb的面積s1=ab·oc/2=4×3÷2=6直線bc的函式為y=x-3
∵oc=ob=3
∴bc=3√2
d到直線bc的距離d=︳1-b-3︳/√[1²+﹙﹣1﹚²]=︳b+2︳/√2
∴s△bcd=bc·d/2=3√2×︳b+2︳/√2÷2=3︳b+2︳/2=6
∴︳b+2︳=4 即(b+2)²=16
∴b=2 或 b=﹣6
∴d的座標為(1,2)或(1,﹣6)
(2)設p的座標為(1,a)
當∠bpc=90°時,
pb²+pc²=bc²=18
pb²=﹙1-3﹚²+﹙a-0﹚²=a²+4pc²=﹙1-0﹚²+﹙a+3﹚²=a²+6a+10∴a²+4+a²+6a+10=2a²+6a+14=18即 a²+3a-2=0
∴a=﹙-3+√17﹚/2 或a=﹙-3-√17﹚/2∴當角bpc為鈍角時,a的取值範圍為
﹙﹙-3-√17﹚/2 ,﹙-3+√17﹚/2 ﹚
7樓:匿名使用者
d【1,-6】或【1,2】
要 二分之﹙三加根號17﹚大於y大於 二分之﹙三減根號17﹚
如圖,拋物線y=-x2+2x+3與x軸相交於a,b兩點(點a在點b的左側),與y軸相交於點c,頂點為d.(1)直接寫
8樓:窩窩煮蛋殼
(1)設0=-x2+2x+3,
解得:x=-1或3,
∵拋物線y=-x2+2x+3與x相交於ab(點a點b左側),∴a(-1,0),b(3,0),
∵拋物線與y軸相交於點c,
∴c(0,3),
∴拋物線的對稱軸是:直線x=1.
(2)①設直線bc的函式關係式為y=kx+b,把b(3,0),c(0,3)分別代入,
得3k+b=0
b=3,解得:k=-1,b=3
∴直線bc的函式關係式為y=-x+3.
當x=1時,y=-1+3=2,∴e(1.2).當x=m時,y=-m+3,∴p(m,-m+3)在y=-x2+2x+3中,當x=1時,y=4,∴d(1,4).當x=m時,y=-m2+2m+3,
∴f(m,-m2+2m+3),
∴線段de=4-2=2,
線段pf=-m2+2m+3-(-m+3)=-m2+3m,∵pf∥de
∴當pf=de時,四邊形pedf為平行四邊形.由-m2+3m=2,解得m=2或m=1(不合題意,捨去).因此,當m=2時,四邊形pedf為平行四邊形.②設直線pf與x軸交於點m,由b(3,0),o(0,0),可得ob=om+mb=3.
∵s=s△epf+s△cpf,
即s=1
2pf?bm+1
2pf?om=12
pf(bm+om)=12
pf?ob,
∴s=1
2×3(-m2+3m)=-3
2m2+9
2m(0≤m≤3)
∴當m=-9
22×(?32)
=32時s最大值=27
8∵ao⊥co,
∴∠o′ec=∠coa=90°
∵∠aco=∠eco,
∴△aco∽△o′ce,
∴acoc
=oaoe
,由(1)得ao=1,co=3,ac=10,設x秒後⊙0與ac相切,
則oo′=x,co′=|3-x|,∴10
|3?x|
=1104,
解得:x=0.5或5.5,
∴0.5或5.5秒後⊙o與直線ac相切.
如圖,拋物線y=-x2+2x+3與x軸相交於a、b兩點(點a在點b的左側),與y軸相交於點c,頂點為
9樓:耿澤文
拋物線y=x²-2x-3=(x-1)^2-4令y=x²-2x-3=(x-3)(x+1)=0得a(-1,0) b(3,0)c(2,-3)使a、c、f、g這樣的四個點為頂點的四邊形是平行四邊形分析a、f2點關係:要麼四邊形鄰點,要麼對點(1)若為鄰點 必有af//gc 因為af為x軸 所以gc//x軸 再加上g為拋物線上的點 所以容易得g(0,-3)所以cg=2所以af=2所以f=(1,0)或(-3,0)
(2)若為對點 那麼g c2點必關於af對稱 所以g點縱座標為3 則g為(1+√7,3)或(1-√7,3)
ag=√[(1+√7+1)²+3²]=√(2+√7)²+9]或√[(1-√7+1)²+3²]=√[(2-√7)²+9]
則fc=√(2+√7)²+9]或√[(2-√7)²+9]因為c(2,-3)f橫座標為0解得f(√7,0)或(-√7,0)
10樓:匿名使用者
解:(1)a(-1,0),b(3,0),c(0,3).拋物線的對稱軸是:x=1.
(2)①設直線bc的函式關係式為:y=kx+b.把b(3,0),c(0,3)分別代入得: 3k+b=0 b=3解得:k=-1,b=3.
所以直線bc的函式關係式為:y=-x+3.當x=1時,y=-1+3=2,
∴e(1,2).
當x=m時,y=-m+3,
∴p(m,-m+3).
在y=-x2+2x+3中,當x=1時,y=4.∴d(1,4)
當x=m時,y=-m2+2m+3,
∴f(m,-m2+2m+3)
∴線段de=4-2=2,
線段pf=-m2+2m+3-(-m+3)=-m2+3m∵pf∥de,
∴當pf=ed時,四邊形pedf為平行四邊形.由-m2+3m=2,解得:m1=2,m2=1(不合題意,捨去).因此,當m=2時,四邊形pedf為平行四邊形.②設直線pf與x軸交於點m,由b(3,0),o(0,0),可得:ob=om+mb=3.
∵s=s△bpf+s△cpf
即s=1 2 pf•bm+1 2 pf•om=1 2 pf•(bm+om)=1 2 pf•ob.
∴s=1 2 ×3(-m2+3m)=-3 2 m2+9 2 m(0≤m≤3).
如圖,拋物線y=-x2+2x+3與x軸相交於a、b兩點(點a在點b的左側),與y軸相交於點c,頂點為d.(1)直接寫
11樓:血刃迷茫
2=1.
令x=0,則y=0,則c(0,3).
綜上所述,a(-1,0),b(3,0),c(0,3),拋物線的對稱軸是x=1;
(2)①設直線bc的函式關係式為:y=kx+b(k≠0).把b(3,0),c(0,3)分別代入得:
3k+b=0
b=3△bcf
=s△bpf
+s△cpf=12
fp?om+1
2fp?bm=1
2(?m
+3m)×3=?32m
+92m.m的變化範圍是0≤m≤3.
(3)如圖③,如果四邊形pedf是等腰梯形,那麼dg=eh,因此yd-yf=yp-ye.
於是4-(-m2+2m+3)=(-m+3)-2.解得m1=0(與點ce重合,捨去),m2=1(與點e重合,捨去).因此四邊形pedf不可能成為等腰梯形.
如圖,拋物線y x bx c與x軸交於A
鹹菜1疙瘩 1 將a 1,0 b 3,0 代y x 2 bx c中得 1 b c 0 9 3b c 0 b 2c 3 拋物線解析式為 y x 2 2x 3 2 存在 理由如下 由題知a b兩點關於拋物線的對稱軸x 1對稱,直線bc與x 1的交點即為q點,此時 aqc周長最小,y x 2 2x 3,c...
拋物線y x mx 2的對稱抽與拋物線y x 4x 4的對稱抽間的距離為2,求m的直
y x mx 2 x m 2 m 4 2 對稱軸m 2 y x 4x 4 x 2 對稱軸x 2 則 2 m 2 2 m 0,m 8 我們設m n的橫座標分別a b,則對應的縱座標是a 2 b 2 即m a,a 2 n b,b 2 因為mn關於y kx 9 2對稱,所以mn的中點在直線上,並且mn與直...
如圖,拋物線y x2 bx c與X軸交於A 1,0 B 3,0 兩點
北極之遠 解 依題意可知方程 x bx c 0的兩個根是x1 1 x2 3 即方程x bx c 0的兩個根為1和 3 由韋達定理 b 1 3 2 c 1 3 c 3 所以拋物線的解析式為y x 2x 3 存在設c關於拋物線對稱軸對稱的點位d 令x 0由拋物線的解析式可以求得c的座標為 0,3 再令 ...