1樓:匿名使用者
y = x²-mx+m-2
(1)將點(3,6)代入曲線得
6 = 3²-3m+m-2
6 = 7 - 2m
m = 1/2
∴解析式為y = x² - (1/2)x + 1/2 - 2i.e.y = x² - (1/2)x - (3/2)(2)將y = 0代入,得
x² - (1/2)x - (3/2) = 0(1/2)(x+1)(2x-3) = 0
x = -1 or x = 3/2
∴a(-1,0)、b(3/2,0)
y = x²-(1/2)x-(3/2),完全平方= [x²-1/2*x+(1/4)²-(1/4)²]-3/2= (x-1/16)²-1/16-3/2
= (x-1/4)²-25/16
∴頂點座標為(1/4,-25/16)
底的長度=ab=3/2-(-1) = 5/2高為|-25/16| = 25/16
∴三角形面積 = 1/2 * (5/2) * (25/16) = 125/64 = 1.953125
2樓:匿名使用者
(1)因為解析式只有一個待定係數,所以將點(3,6)代入解析式,即得。
6=3²-3m+m-2 得m=1/2
所以y=x²-1/2x-3/2
(2)與x軸的交點,令y=0,得0=x²-1/2x-3/2解得的x值為a、b兩點橫座標。(-1,0)與(3/2,0)再根據頂點座標公式得到c點的縱座標為即(4ac-b^2)/4a=-25/16
三角形的面積為1/2乘a、b兩點橫座標之差的絕對值,再乘c點縱座標的絕對值。
1/2*(3/2-(-1)) *(25/16)=125/64
3樓:匿名使用者
將(3,6)帶入得二次函式為y=x^2-0.5x-1.5
yu x軸的交點為(-1,0)與(3/2,0)與y軸的交點為(0,-3/2)面積為15/8
已知二次函式f x ax bx c滿足f
2是平方 由 f 1 1得 a 1 2 b 1 c 1,即 a b c 1,a b c 1 由 f 1 1得 a 1 2 b 1 c 1,即 a b c 1,a b c 1 由 f 0 1得 a 0 2 b 0 c 1,即 c 1,c 1 這樣可以分類討論了 1 a b c 1 1.1 a b c ...
已知二次函式的影象經過 0,01,
1 設y ax bx c,把 0,0 1,2 1,4 三點分別代入 解,得a 1,b 3,c 0 y x 3x 2 設y a x 1 2,把 1,3 代入解,得a 5 4 y 5 4 x 1 2 3 根據題意可知,a 1,把 5,2 代入y a x 5 2得y x 5 2 4 設y a x 2 k,...
已知當x 5時,二次函式f(x)ax 2 bx c取得最小值,等差數列an的前n項和sn f(n)
解 由題意,b 2a 5,即b 10a an為等差數列,則sn a1 an n 2 f n an 2 bn c,所以c 0,a1 an 2axn 2b,n 2時,a1 a2 4a 2b a b 7,即3a b 7 和 聯立得a 1,b 10,代人 得 an 2n 11.等差數列和的表示式中常數項必定...