將函式f x arctan 1 x 1 x 成x

時間 2021-08-11 18:10:21

1樓:純**眼

解1:注意到一個等式的話,這個題就比較簡單了

tan(π/4+arctanx)=(1+x)/(1-x)

所以 arctan[(1+x)/(1-x)]=arctan[tan(π/4+arctanx)]=π/4+arctanx

所以原式=π/4+arctanx

這樣就可以直接用arctanx的式做了|x|+∞]

所以原式=π/4+arctanx=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

解2:(來自星光下的守望者)

令g(x)=arctan[(1+x)/(1-x)],g(0)=π/4

∫[0->x]g'(t)dt = g(x)-g(0)=g(x)-π/4

g'(x)=[(1+x)/(1-x)]'/[1+(1+x)��/(1-x)��]=1/(1+x��)

g(x)=∫[0->x]g'(t)dt+π/4=∫[0->x] 1/(1+t��)dt+π/4

易知1/(1+t��)=1-t^2+t^4-t^6+…… |t|x] (1-t^2+t^4-t^6+……) dt

=π/4+(x-x^3/3+x^5/5-x^7/7+……)

=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

2樓:茹翊神諭者

簡單計算一下即可,答案如圖所示

將函式f(x)=arctan((1-x)/1+x))成x的冪級數,並寫出它的收斂域.

3樓:純**眼

解1:注意到一個等式的話,這個題就比較簡單了

tan(π/4+arctanx)=(1+x)/(1-x)

所以 arctan[(1+x)/(1-x)]=arctan[tan(π/4+arctanx)]=π/4+arctanx

所以原式=π/4+arctanx

這樣就可以直接用arctanx的式做了|x|+∞]

所以原式=π/4+arctanx=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

解2:(來自星光下的守望者)

令g(x)=arctan[(1+x)/(1-x)],g(0)=π/4

∫[0->x]g'(t)dt = g(x)-g(0)=g(x)-π/4

g'(x)=[(1+x)/(1-x)]'/[1+(1+x)��/(1-x)��]=1/(1+x��)

g(x)=∫[0->x]g'(t)dt+π/4=∫[0->x] 1/(1+t��)dt+π/4

易知1/(1+t��)=1-t^2+t^4-t^6+…… |t|x] (1-t^2+t^4-t^6+……) dt

=π/4+(x-x^3/3+x^5/5-x^7/7+……)

=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

將y 1 x 2展開成X 1的冪函式

y 1 x 2 1 x 而1 x 1 1 x 1 n從0到 1 n x 1 n,x 1 1 所以y 1 x 2成x 1的冪函式為 n從0到 1 n x 1 n n從1到 1 n n x 1 n 1 一種做法做變數替換,令x 1 t,x 1 t,於是y 1 1 t 2 1 1 t 1 t t 2 t ...

函式f xx 1,x,函式f x x 1,x

望穿秋水 f x x 1,x 0 x 2 2x 1,x 0。當x 0時 f x af x 0 f x f x a 0 x 1 x 1 a 0 得 x 1 或 x a 1 a 1 0 a 1當x 0時 x 2x 1 x 2x 1 a 0 x 1 x 1 a 0 得 x 1 或 x 1 a x 1 a ...

將函式展開成x的冪級數1 x 2 5x

分解成部分分式 f x 1 x 2 x 3 1 x 3 1 x 2 根據1 1 x 1 x x 2 x n 得 1 x 3 1 3 1 x 3 1 3 1 x 3 x 2 3 2 x n 3 n 1 3 x 3 2 x 2 3 3 x n 3 n 1 1 x 2 1 2 1 x 2 1 2 1 x ...