線性代數求出下列方程所有的根,謝謝!

時間 2023-05-28 16:06:09

1樓:帳號已登出

左式 = 行列式)r3+2r2

x-1 4 2

2 x-7 -4

0 2x-4 x-2

c2-2c3

x-1 0 2

2 x+1 -4

0 0 x-2

x-1)(x+1)(x-2)

所以根為 1,2,-1。

行列式在數學中。

是一個函式,其定義域為det的矩陣a,取值為一個標量,寫作det(a)或 | a | 無論是**性代數、多項式理論,還是在微積分學中,行列式作為基本的數學工具,都有著重要的應用。行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在 n 維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。

2樓:匿名使用者

左式 = 行列式)

x-1 4 2

2 x-7 -4

4 10 x+6

r3+2r2

x-1 4 2

2 x-7 -4

0 2x-4 x-2

c2-2c3

x-1 0 2

2 x+1 -4

0 0 x-2

x-1)(x+1)(x-2).

所以根為 1,2,-1.滿意。

線性代數,請問一下,這題怎麼做,求解答,要過程,謝謝

3樓:匿名使用者

3.對a作行(或列)的初等變換:

把第三行對-2,3倍分別加到第。

一、二行,得。

2 0 -1 5 6,把第四行的3,8倍分別加到第。

一、二行,得。

2 0 -1 5 6,至此, 可以知道,前4列組成的4階行列式 不為0,所 以r(a)=4.

線性代數問題:當λ取何值時,下列線性方程有解

4樓:俱懷逸興壯思飛欲上青天攬明月

對增廣矩陣做初等變換,最終得到。

那麼只有-λ=0

即λ=0時,才能有r(a)=r(增廣矩陣)=2所以λ=0

線性代數,解方程,求過程,謝謝!

5樓:匿名使用者

按第一行就可以了,對於元素a11,餘子式的行列式為:x³-4x對於a12,餘子式的行列式為:x²-4

所以原式=x³+x²-4x-4=x²(x+1)-4(x+1)=(x²-4)(x+1)=(x-2)(x+2)(x+1)

因此方程的根為:2,-2,-1

線性代數,方程問題,謝謝各位好心人解答 10

6樓:匿名使用者

你好!n元線性方程組ax=0的基礎解系所含向量個數是n-r(a),這裡3-r(a)=1,所以r(a)=2。經濟數學團隊幫你解答,請及時採納。謝謝!

線性代數,求詳細過程~

7樓:北珈藍疏

8、三階行列式後共3!=6項,其中每一項都取自不同行不同列三個元素的乘積,因此含有因子a13a22的項為a13a22a31;9、四階行列式後共4!=24項,其中每一項都取自不同行不同列四個元素的乘積,因此含有因子a11a23的項為a11a23a32a44或a11a23a34a42。

線性代數題,線性代數的題?

線性代數初等行變換。數學工具多多益善如圖所示請採納謝謝。例如第一題的第一步是r2 2r1,也就是說第一行減去第二行的二倍,然後r1 2r2,得到逆矩陣為 5,2 2,1 一 單項選擇題 本大題共14小題,每小題2分,共28分 在每小題列出的四個選項中只有一個是符合題目要求的,請將其 填在題後的括號內...

線性代數概念問題,線性代數概念問題

xi di d di 0 因為第i列全為0 所以xi 0 d 0 從多個角度都可以考慮。1 從線性相關性考慮 設a 1,2,n ax 0,就是x1 1 x2 2 x3 3 xn n 0 如果 a 0,就是說明a可逆,r a n,也就是說明a的列向量線性無關。根據線性無關的定義知,x1 1 x2 2 ...

線性代數問題,求解,線性代數問題,求解

楓默鬼哥樁 我來試試吧。1 解 1 a 3 0 a 3 0 a 0,即 a 0e 0,0是矩陣a的一個特徵 設 為矩陣a的任一特徵值,則存在非零向量x,使得ax x 上式兩邊同左乘矩陣a,得aax a 2 x a x ax 2 x 2是3階矩陣a 2的特徵值。同理,3是矩陣a 3的特徵值。即 a 3...