線性代數概念問題,線性代數概念問題

時間 2021-08-11 17:41:16

1樓:匿名使用者

xi=di/d

di=0 (因為第i列全為0)

所以xi=0/d=0

2樓:匿名使用者

從多個角度都可以考慮。

1、從線性相關性考慮

設a=(α1,α2,...,αn)

ax=0,就是x1α1+x2α2+x3α3+...+xnαn = 0

如果|a|≠0,就是說明a可逆,r(a)=n,也就是說明a的列向量線性無關。

根據線性無關的定義知,x1α1+x2α2+x3α3+...+xnαn = 0只有xi為0時,α1,α2,...,αn才線性無關。

所以方程只有零解。

2、從可逆的定義考慮

若|a|≠0,那麼可逆,ax=0的兩端左乘a-1,得x=0,經過運算x只有零解。

3、從cramer's rule考慮

若|a|≠0,ax=b必然有唯一解。x=|ai|/|a|,考慮到此時b=(0,0,...,0)t,所以|ai| = 0

那麼由cramer's rule計算x只有唯一零解。

還有不同的考慮角度。

newmanhero 2023年5月25日22:19:16

希望對你有所幫助,望採納。

3樓:少男少女

線性代數是代數學的一個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。

含有 n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。線性關係問題簡稱線性問題。

解線性方程組的問題是最簡單的線性問題。

線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。

隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以計算出來,線性代數正是解決這些問題的有力工具。

線性代數的含義隨數學的發展而不斷擴大。線性代數的理論和方法已經滲透到數學的許多分支,同時也是理論物理和理論化學所不可缺少的代數基礎知識。

“以直代曲”是人們處理很多數學問題時一個很自然的思想。很多實際問題的處理,最後往往歸結為線性問題,它比較容易處理。因此,線性代數在工程技術和國民經濟的許多領域都有著廣泛的應用,是一門基本的和重要的學科。

線性代數的計算方法是計算數學裡一個很重要的內容。

大學線性代數問題

4樓:鴻運設計

就是行列式變換啊,沒你想的那麼複雜,轉換成上三角就行了。。

學習線性代數的實際意義?

5樓:匿名使用者

線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。

線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。

擴充套件資料

線性代數起源於對二維和三維直角座標系的研究。在這裡,一個向量是一個有方向的線段,由長度和方向同時表示。這樣向量可以用來表示物理量,比如力,也可以和標量做加法和乘法。

這就是實數向量空間的第一個例子。

現代線性代數已經擴充套件到研究任意或無限維空間。一個維數為 n 的向量空間叫做n 維空間。在二維和三維空間中大多數有用的結論可以擴充套件到這些高維空間。

儘管許多人不容易想象n 維空間中的向量,這樣的向量(即n 元組)用來表示資料非常有效。

6樓:匿名使用者

線性代數可非常有用。

如果你不學,估計你連為什麼有這個用處都不知道。

線性代數在所有需要分析多維線性方程的場合都有很大應用。例如大規模類比電路,在某個集合v上定義了加法和數乘運算,若他們滿足一定規律則構成一個線性空間v。線性代數就是研究線性空間的結構。

這種結構很普遍,比如線性方程組,常係數齊次線性微分方程,積分方程,座標的平移、旋轉和映象對稱,函式空間等等都具有這種結構。線性代數還研究兩個線性空間v1到v2的對映,即所謂線性變換。通過線性代數,我們可以一舉解決許多具有類似結構的數學問題,這正是數學抽象的魅力所在。

線性代數裡面有一些基本概念和定理,非常重要。比如線性相關、線性無關、基、維數、正交、秩等等,這些概念反映了線性空間的本質特徵。

7樓:驀然回首處

線性代數是處理線性問題的思想方法。現在已經廣泛應用於工程技術中。確實剛剛看到這些定義和定理沒有什麼感覺。

但是他們確實扮演了非常重要的作用。就問題做一些回答,以下的回答可能有些比較理論。

最早接觸的應該是“秩”。向量組、矩陣、線性對映最重要的特徵之一。它由向量組極大線性無關組引入,反映了向量組的線性相關程度,並推廣到了矩陣,乃至線性對映。

矩陣的秩的典型應用就是討論線性方程組的基礎解繫個數,後者解決了線性方程組的解結構。線性方程組的求解即使在現在還是非常重要,因為計算機只能“線性”地求解問題,所以所有問題在計算機處理前都要線性化。

事實上秩還有很多應用(統計、數值計算)。n維向量空間是從我們現實空間抽象出來的。要說它的應用就不好說了,其實數學中很多概念是奠定基礎的,基於這些概念建立了非常完美的理論,後者有著很好的應用,但是前者就很難牽扯的這些應用,但不能應用這樣就認為它沒有用。

至於矩陣乘法最早也是從線性方程組中發展而來,其實一種運算的運算方式都是我們賦予的。這包括了四則運算。而矩陣運算這種運算方式的產生就是由於應用(線性方程組),更重要的是這種運算方式使得具有很多很好的性質,使得處理問題變得非常容易。

實質上,從空間角度上看,矩陣乘法使得矩陣成為從空間rn到rm空間的對映。至於伴隨矩陣,也是線性方程組研究的產物,但是後來我們發現,伴隨矩陣可以完全刻畫可逆矩陣的逆矩陣。最後想說的是,並非所有概念都有他的實際應用。

但是這些看似沒有作用的概念和定理為真正有廣泛應用的概念和定理做了很好的鋪墊。

8樓:匿名使用者

線代為各種專業課鋪路...這個真沒騙你,和高數差不多

線性代數簡單概念問題

9樓:匿名使用者

不對!沒有的式子,猜想可以,但是請自己證明。

線性代數有什麼學習技巧麼?

線性代數到底有什麼用?

10樓:不是苦瓜是什麼

線性代數

在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。

線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。

隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以被計算出來,線性代數正是解決這些問題的有力工具。線性代數的計算方法也是計算數學裡一個很重要的內容。

線性代數的含義隨數學的發展而不斷擴大。線性代數的理論和方法已經滲透到數學的許多分支,同時也是理論物理和理論化學所不可缺少的代數基礎知識。

現代線性代數已經擴充套件到研究任意或無限維空間。一個維數為 n 的向量空間叫做n 維空間。在二維和三維空間中大多數有用的結論可以擴充套件到這些高維空間。

儘管許多人不容易想象n 維空間中的向量,這樣的向量(即n 元組)用來表示資料非常有效。

由於作為 n 元組,向量是n 個元素的“有序”列表,大多數人可以在這種框架中有效地概括和操縱資料。

比如,在經濟學中可以使用 8 維向量來表示 8 個國家的國民生產總值(gnp)。當所有國家的順序排定之後,比如(中國、美國、英國、法國、德國、西班牙、印度、澳大利亞),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)顯示這些國家某一年各自的 gnp。這裡,每個國家的 gnp 都在各自的位置上。

11樓:熱心網友

線性代數是一個很神奇的東西,線性代數方法是使用線性觀點看待問題,並用線性代數的語言

描述它、解決它(必要時可使用矩陣運算)的方法。這是數學與工程學中最主要的應用之一。其

實,所有的高深數學究其根本都離不開線性代數甚至是矩陣。只是我們大學學的都很淺,只是作為

瞭解而已,只有以後真正要搞研究的人才會深入的學習。

拓展資料:

,線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和

有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象

代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

12樓:小地主堅持一下

回答這個問題必須等你碰到實際的工程問題,或者類似的模擬工程場景時才好說清楚,而不能直接從數學本身去回答!因為專業太多,僅以我國快速發展高鐵為例回答。高鐵高速執行於路軌,振動是躲不開的問題,必須將振幅限制在可控範圍內。

土木工程師很容易根據動力學方程建立起振動方程組,並求解出列車經過時各處鋼軌的振幅。振動方程組可能很複雜,是非線性的,是時變的,但總可以變形簡化為簡單的線性方程組,這時你學習的線性代數解方程的方法就派上用場。當你利用線性代數知識,得出一組解,分析一通,得出振幅超標需要改進,豈不美哉?

再回到問題的開始。從數學角度講,線性代數是高等數學的補充,是數學工具,是複雜問題簡單化後數學工具。從哲學角度講,自然界問題分為線性問題和非線性問題,非線性問題總可以在一定範圍內通過轉化和簡化變為線性問題。

最直接的回答,線性代數是解線性方程組的。能判斷是否有解、唯一解還是多個解。如果你是大學生,那線性代數的作用就僅限於考試和畢設時將實際問題變為線性方程組後的求解。

線性代數線性表示的問題,線性代數線性表示問題

向量組等價,是兩向量組中的各向量,都可以用另一個向量組中的向量線性表示。矩陣等價,是存在可逆變換 行變換或列變換,對應於1個可逆矩陣 使得一個矩陣之間可以相互轉化。如果是行變換,相當於兩矩陣的列向量組是等價的。如果是列變換,相當於兩矩陣的行向量組是等價的。由於矩陣的行秩,與列秩相等,就是矩陣的秩,在...

線性代數問題,求解,線性代數問題,求解

楓默鬼哥樁 我來試試吧。1 解 1 a 3 0 a 3 0 a 0,即 a 0e 0,0是矩陣a的一個特徵 設 為矩陣a的任一特徵值,則存在非零向量x,使得ax x 上式兩邊同左乘矩陣a,得aax a 2 x a x ax 2 x 2是3階矩陣a 2的特徵值。同理,3是矩陣a 3的特徵值。即 a 3...

求線性代數的問題,求線性代數的問題!!

有三種化肥,成份如表。現要得到200kg含鉀12 氮25 磷63 的化肥,需要以上三種化肥的量各是多少kg?鉀 氮 磷 化肥a 20 30 50 化肥b 10 20 70 化肥c 0 30 70 怎樣求極大無關組,線性代數問題,求教! 如之人兮 先把那幾個向量以列向量的形式寫成一個矩陣,然後求這個矩...