函式的單調性,求函式單調性的基本方法

時間 2021-08-30 10:26:39

1樓:

函式的單調性(monotonicity)也叫函式的增減性,可以定性描述在一個指定區間內,函式值變化與自變數變化的關係。當函式f(x) 的自變數在其定義區間內增大(或減小)時,函式值也隨著增大(或減小),則稱該函式為在該區間上具有單調性(單調增加或單調減少)。 在集合論中,在有序集合之間的函式,如果它們保持給定的次序,是具有單調性的。

如果說明一個函式在某個區間d上具有單調性,則我們將d稱作函式的一個單調區間,則可判斷出:

d⊆q(q是函式的定義域)。

區間d上,對於函式f(x),∀ x1,x2∈d且x1>x2,都有f(x1) >f(x2)。或,∀ x1,x2∈d且x1>x2,都有f(x1)

函式影象一定是上升或下降的。

該函式在e⊆d上與d上具有相同的單調性。

注意:1、函式單調性是針對某一個區間而言的,是一個區域性性質。因此,說單調性時最好指明區間。

2、有些函式在整個定義域內是單調的;有些函式在定義域內的部分割槽間上是增函式,在部分割槽間上是減函式;有些函式是非單調函式,如常數函式。

3、函式的單調性是函式在一個單調區間上的「整體」性質,具有任意性,不能用特殊值代替。

4、在利用導數討論函式的單調區間時,首先要確定函式的定義域,解決問題的過程中只能在定義域內,通過討論導數的符號來判斷函式的單調區間。

5、如果一個函式具有相同單調性的單調區間不止一個,那麼這些單調區間不能用「∪」連線,而只能用「逗號」或「和」字隔開。

2樓:匿名使用者

√(1-x平方) = t

x^2 = 1- t^2

f(x) = 1 - t^2 + t = 5/4 - (t -1/2)^2

= 5/4 - [√(1 -x²) - 1/2 ]²

函式的定義域是 [-1, 1]

在 [-1, -√3/2] 區間, 隨 x 增加, x² 增加, 1-x² 減少, [√(1 -x²) - 1/2 ]² 遞減, 5/4 - [√(1 -x²) - 1/2 ]² 遞增

餘此類推. 總結出

當 x = ±√3/2 時, [√(1 -x²) - 1/2 ]² = 0, f(x) 函式取最大值

當 x = 0 時, f(x) 取最小值

f(x) 在 [-1, -√3/2] 上遞增, 然後在 [-√3/2, 0] 上遞減, 在[0,√3/2]上遞增,在[√3/2,1]上遞減

答案為 b

--------------

題目初步給人感覺 用三角函式換元會更簡單, 但實際上卻並未因此帶來簡單

設 x = cosa

f(x) = cos²a + |sina| = 1 + |sina| - sin²a

= 5/4 - (|sina| - 1/2)²

從這裡直接進行討論的話, 依然很麻煩, 看不出清晰的結論. 所以只好繼續往下走

= 5/4 - [√(1-x²) - 1/2]²

又和上面一樣了

我的方法也不見得好, 歡迎指教.

3樓:匿名使用者

選a.解:因1-x^2≥0.

===>-1≤x≤1.故可設x=cost.(0≤t≤π).

則f(t)=sint+(cost)^2=sint+1-(sint)^2.求導得:f'(t)=cost-2sintcost=cost(1-2sint).

由題設有:cost>0,且1-2sint>0.或cost<0,且1-2sint<0.

===>0√3/2

求函式單調性的基本方法?

4樓:nice千年殺

一般是用導數法。對f(x)求導,f』(x)=3x²-3=3(x+1)(x-1)

令f』(x)>0,可得到單調遞增區間(-∞,-1)∪(1,+∞),同理單調遞減區間[-1,1]

複合函式還可以用規律法,對於f(g(x)),如果f(x),g(x)都單調遞增(減),則複合函式單調遞增;否則,單調遞減。口訣:同增異減。

還可以使用定義法,就是求差值的方法。

拓展資料

導數:導數是變化率、是切線的斜率、是速度、是加速度;導數是用來找到「線性近似」的數學工具;導數是線性變換,這是導數的三重認識,定義是函式值的變化量比上自變數的變化量。

5樓:安貞星

1、導數法

首先對函式進行求導,令導函式等於零,得x值,判斷x與導函式的關係,當導函式大於零時是增函式,小於零是減函式。

2、定義法

設x1,x2是函式f(x)定義域上任意的兩個數,且x1<x2,若f(x1)<f(x2),則此函式為增函式;反知,若f(x1)>f(x2),則此函式為減函式.

3、性質法

若函式f(x)、g(x)在區間b上具有單調性,則在區間b上有:

① f(x)與f(x)+c(c為常數)具有相同的單調性;

②f(x)與c•f(x)當c>0具有相同的單調性,當c<0具有相反的單調性;

③當f(x)、g(x)都是增(減)函式,則f(x)+g(x)都是增(減)函式;

④當f(x)、g(x)都是增(減)函式,則f(x)•g(x)當兩者都恆大於0時也是增(減)函式,當兩者都恆小於0時也是減(增)函式;

4、複合函式同增異減法

對於複合函式y=f [g(x)]滿足「同增異減」法(應注意內層函式的值域),令 t=g(x),則三個函式 y=f(t)、t=g(x)、y=f [g(x)]中,若有兩個函式單調性相同,則第三個函式為增函式;若有兩個函式單調性相反,則第三個函式為減函式。

拓展資料:

函式的定義:

給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。假設b中的元素為y。

則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。

函式單調性的定義:

一般的,設函式y=f(x)的定義域為a,i↔a,如對於區間內任意兩個值x1、x2,

1)、當x12)、當x1>x2時,都有f(x1)>f(x2),那麼就說y=f(x)在區間i上是單調減函式,i稱為函式的單調減區間。

6樓:飄雪啊

1. 定義法:證明函式

單調性一般用定義,如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。

2.性質法: 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法(同增異減。)

3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。

函式的定義:給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。

假設b中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。

函式的單調性就是隨著x的變大,y在變大就是增函式,y變小就是減函式,具有這樣的性質就說函式具有單調性,符號表示:就是定義域內的任意取x1,x2,且x1<x2,比較f(x1),f(x2)的大小,影象上看從左往右看影象在一直上升或下降的就是單調函式。

常用方法:

1.導數

2.構造基本初等函式(已知單調性的函式)

3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。

4.定義法

5.數形結合

6.複合函式的單調性一般是看函式包含的兩個函式的單調性:

(1)如果兩個都是增的,那麼函式就是增函式;

(2)一個是減一個是增,那就是減函式 ;

(3)兩個都是減,那就是增函式。

7樓:匿名使用者

一、相減法。即判斷f(x1)-f(x2)(其中x1和x2屬於定義域,假設x1,若該式小於零,則在定義域內函式為增函式。(要注意的是在定義域內,函式既可能為增函式,也可能為減函式,具體情況要看求出來的x的範圍,注意不等式的解答時不要錯。

)拿你舉的例子來說:

首先,確定函式的定義域:r.

第二步,令x10,則得到的x的區間為f(x)的單調遞增區間。(其原因你畫下影象就很明顯了).

拿你的例子來說吧。

第一步還是確定定義域:為r. 第二步求導,為f(x)』=3x^2-3。

第三步,求區間:令f(x)』>0有x>1或x<-1,所以f(x)的增區間為(1,正無窮)和(負無窮,-1);令f(x)』<=0,有-1<=x<=1,所以f(x)的減區間為[-1,1]。端點取在哪兒都可以,連續函式的話不影響其單調性。

最後總結一下即可。

8樓:匿名使用者

1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。

另外還請注意函式單調性的定義是[充要命題]。

2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。

3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。 還應注意函式單調性的應用,例如求極值、比較大小,還有和不等式有關的問題。

定義法的基本步驟:

一般的,求函式單調性有如下幾個步驟:

1、取值x1,x2屬於,並使x1

2、作差f(x1)-f(x2)

3、變形

4、定號(判斷f(x1)-f(x2)的正負)

5、下結論

常用方法:

1.導數

2.構造基本初等函式(已知單調性的函式)

3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。

4.定義法

5.數形結合

6.複合函式的單調性一般是看函式包含的兩個函式的單調性:(1)如果兩個都是增的,那麼函式就是增函式;(2)一個是減一個是增,那就是減函式 ;(3)兩個都是減,那就是增函式

9樓:你的甜甜一笑

1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。

另外還請注意函式單調性的定義是[充要命題]。

2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。

關於分段函式單調性問題,關於分段函式單調性問題

定湛談嘉志 黃色的是。首先,偶函式,定義域關於原點對稱,然後,影象關於y軸對稱 分段函式,則函式是幾段函式構成的,反映在影象,就是由幾段影象構成。 那就只需要比較區間間隔點 假設為a 左右鄰域的函式值 如果f a f a f a 那麼這個分段函式單調增 如果f a f a f a 且這兩個大於等於號...

有關雙勾函式單調性的證明,對勾函式單調性的求法與證明。

對勾函式y x a x上的單調性 顯然,如果x 0,利用不等式可以知道當x a x時,取得最小值此時x 根號下a 分開討論0根號下a 設有01 則1 a x1x2 0,而x1 x2 0所以x1 a x1 x2 a x2 0則在00.而x1 x2 0 所以x1 a x1 x2 a x2 0 則在x 根...

什麼是單調函式,什麼是函式的單調性?

文唐海置 單調函式 一般地,設函式f x 的定義域為i 如果對於屬於i內某個區間上的任意兩個自變數的值x1 x2,當x1f x2 那麼就是f x 在這個區間上是減函式。如果函式y f x 在某個區間是增函式或減函式。那麼就說函說y f x 在這一區間具有 嚴格的 單調性,這一區間叫做y f x 的單...