1樓:
函式的單調性(monotonicity)也叫函式的增減性,可以定性描述在一個指定區間內,函式值變化與自變數變化的關係。當函式f(x) 的自變數在其定義區間內增大(或減小)時,函式值也隨著增大(或減小),則稱該函式為在該區間上具有單調性(單調增加或單調減少)。 在集合論中,在有序集合之間的函式,如果它們保持給定的次序,是具有單調性的。
如果說明一個函式在某個區間d上具有單調性,則我們將d稱作函式的一個單調區間,則可判斷出:
d⊆q(q是函式的定義域)。
區間d上,對於函式f(x),∀ x1,x2∈d且x1>x2,都有f(x1) >f(x2)。或,∀ x1,x2∈d且x1>x2,都有f(x1) 函式影象一定是上升或下降的。 該函式在e⊆d上與d上具有相同的單調性。 注意:1、函式單調性是針對某一個區間而言的,是一個區域性性質。因此,說單調性時最好指明區間。 2、有些函式在整個定義域內是單調的;有些函式在定義域內的部分割槽間上是增函式,在部分割槽間上是減函式;有些函式是非單調函式,如常數函式。 3、函式的單調性是函式在一個單調區間上的「整體」性質,具有任意性,不能用特殊值代替。 4、在利用導數討論函式的單調區間時,首先要確定函式的定義域,解決問題的過程中只能在定義域內,通過討論導數的符號來判斷函式的單調區間。 5、如果一個函式具有相同單調性的單調區間不止一個,那麼這些單調區間不能用「∪」連線,而只能用「逗號」或「和」字隔開。 2樓:匿名使用者 √(1-x平方) = t x^2 = 1- t^2 f(x) = 1 - t^2 + t = 5/4 - (t -1/2)^2 = 5/4 - [√(1 -x²) - 1/2 ]² 函式的定義域是 [-1, 1] 在 [-1, -√3/2] 區間, 隨 x 增加, x² 增加, 1-x² 減少, [√(1 -x²) - 1/2 ]² 遞減, 5/4 - [√(1 -x²) - 1/2 ]² 遞增 餘此類推. 總結出 當 x = ±√3/2 時, [√(1 -x²) - 1/2 ]² = 0, f(x) 函式取最大值 當 x = 0 時, f(x) 取最小值 f(x) 在 [-1, -√3/2] 上遞增, 然後在 [-√3/2, 0] 上遞減, 在[0,√3/2]上遞增,在[√3/2,1]上遞減 答案為 b -------------- 題目初步給人感覺 用三角函式換元會更簡單, 但實際上卻並未因此帶來簡單 設 x = cosa f(x) = cos²a + |sina| = 1 + |sina| - sin²a = 5/4 - (|sina| - 1/2)² 從這裡直接進行討論的話, 依然很麻煩, 看不出清晰的結論. 所以只好繼續往下走 = 5/4 - [√(1-x²) - 1/2]² 又和上面一樣了 我的方法也不見得好, 歡迎指教. 3樓:匿名使用者 選a.解:因1-x^2≥0. ===>-1≤x≤1.故可設x=cost.(0≤t≤π). 則f(t)=sint+(cost)^2=sint+1-(sint)^2.求導得:f'(t)=cost-2sintcost=cost(1-2sint). 由題設有:cost>0,且1-2sint>0.或cost<0,且1-2sint<0. ===>0√3/2 求函式單調性的基本方法? 4樓:nice千年殺 一般是用導數法。對f(x)求導,f』(x)=3x²-3=3(x+1)(x-1) 令f』(x)>0,可得到單調遞增區間(-∞,-1)∪(1,+∞),同理單調遞減區間[-1,1] 複合函式還可以用規律法,對於f(g(x)),如果f(x),g(x)都單調遞增(減),則複合函式單調遞增;否則,單調遞減。口訣:同增異減。 還可以使用定義法,就是求差值的方法。 拓展資料 導數:導數是變化率、是切線的斜率、是速度、是加速度;導數是用來找到「線性近似」的數學工具;導數是線性變換,這是導數的三重認識,定義是函式值的變化量比上自變數的變化量。 5樓:安貞星 1、導數法 首先對函式進行求導,令導函式等於零,得x值,判斷x與導函式的關係,當導函式大於零時是增函式,小於零是減函式。 2、定義法 設x1,x2是函式f(x)定義域上任意的兩個數,且x1<x2,若f(x1)<f(x2),則此函式為增函式;反知,若f(x1)>f(x2),則此函式為減函式. 3、性質法 若函式f(x)、g(x)在區間b上具有單調性,則在區間b上有: ① f(x)與f(x)+c(c為常數)具有相同的單調性; ②f(x)與c•f(x)當c>0具有相同的單調性,當c<0具有相反的單調性; ③當f(x)、g(x)都是增(減)函式,則f(x)+g(x)都是增(減)函式; ④當f(x)、g(x)都是增(減)函式,則f(x)•g(x)當兩者都恆大於0時也是增(減)函式,當兩者都恆小於0時也是減(增)函式; 4、複合函式同增異減法 對於複合函式y=f [g(x)]滿足「同增異減」法(應注意內層函式的值域),令 t=g(x),則三個函式 y=f(t)、t=g(x)、y=f [g(x)]中,若有兩個函式單調性相同,則第三個函式為增函式;若有兩個函式單調性相反,則第三個函式為減函式。 拓展資料: 函式的定義: 給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。假設b中的元素為y。 則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。 函式單調性的定義: 一般的,設函式y=f(x)的定義域為a,i↔a,如對於區間內任意兩個值x1、x2, 1)、當x12)、當x1>x2時,都有f(x1)>f(x2),那麼就說y=f(x)在區間i上是單調減函式,i稱為函式的單調減區間。 6樓:飄雪啊 1. 定義法:證明函式 單調性一般用定義,如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。 2.性質法: 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法(同增異減。) 3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。 函式的定義:給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。 假設b中的元素為y。則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。 函式的單調性就是隨著x的變大,y在變大就是增函式,y變小就是減函式,具有這樣的性質就說函式具有單調性,符號表示:就是定義域內的任意取x1,x2,且x1<x2,比較f(x1),f(x2)的大小,影象上看從左往右看影象在一直上升或下降的就是單調函式。 常用方法: 1.導數 2.構造基本初等函式(已知單調性的函式) 3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。 4.定義法 5.數形結合 6.複合函式的單調性一般是看函式包含的兩個函式的單調性: (1)如果兩個都是增的,那麼函式就是增函式; (2)一個是減一個是增,那就是減函式 ; (3)兩個都是減,那就是增函式。 7樓:匿名使用者 一、相減法。即判斷f(x1)-f(x2)(其中x1和x2屬於定義域,假設x1,若該式小於零,則在定義域內函式為增函式。(要注意的是在定義域內,函式既可能為增函式,也可能為減函式,具體情況要看求出來的x的範圍,注意不等式的解答時不要錯。 )拿你舉的例子來說: 首先,確定函式的定義域:r. 第二步,令x10,則得到的x的區間為f(x)的單調遞增區間。(其原因你畫下影象就很明顯了). 拿你的例子來說吧。 第一步還是確定定義域:為r. 第二步求導,為f(x)』=3x^2-3。 第三步,求區間:令f(x)』>0有x>1或x<-1,所以f(x)的增區間為(1,正無窮)和(負無窮,-1);令f(x)』<=0,有-1<=x<=1,所以f(x)的減區間為[-1,1]。端點取在哪兒都可以,連續函式的話不影響其單調性。 最後總結一下即可。 8樓:匿名使用者 1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。 另外還請注意函式單調性的定義是[充要命題]。 2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。 3. 高三選修課本有導數及其應用,用導數求函式的單調區間一般是非常簡便的。 還應注意函式單調性的應用,例如求極值、比較大小,還有和不等式有關的問題。 定義法的基本步驟: 一般的,求函式單調性有如下幾個步驟: 1、取值x1,x2屬於,並使x1 2、作差f(x1)-f(x2) 3、變形 4、定號(判斷f(x1)-f(x2)的正負) 5、下結論 常用方法: 1.導數 2.構造基本初等函式(已知單調性的函式) 3.複合函式:根據同增異減口訣,先判斷內層函式的單調性,再判斷外層函式單調性,在同一定義域上,若兩函式單調性相同,則此複合函式在此定義域上為增函式,反之則為減函式。 4.定義法 5.數形結合 6.複合函式的單調性一般是看函式包含的兩個函式的單調性:(1)如果兩個都是增的,那麼函式就是增函式;(2)一個是減一個是增,那就是減函式 ;(3)兩個都是減,那就是增函式 9樓:你的甜甜一笑 1. 把握好函式單調性的定義。證明函式單調性一般(初學最好用定義)用定義(謹防迴圈論證),如果函式解析式異常複雜或者具有某種特殊形式,可以採用函式單調性定義的等價形式證明。 另外還請注意函式單調性的定義是[充要命題]。 2. 熟練掌握基本初等函式的單調性及其單調區間。理解並掌握判斷複合函式單調性的方法:同增異減。 定湛談嘉志 黃色的是。首先,偶函式,定義域關於原點對稱,然後,影象關於y軸對稱 分段函式,則函式是幾段函式構成的,反映在影象,就是由幾段影象構成。 那就只需要比較區間間隔點 假設為a 左右鄰域的函式值 如果f a f a f a 那麼這個分段函式單調增 如果f a f a f a 且這兩個大於等於號... 對勾函式y x a x上的單調性 顯然,如果x 0,利用不等式可以知道當x a x時,取得最小值此時x 根號下a 分開討論0根號下a 設有01 則1 a x1x2 0,而x1 x2 0所以x1 a x1 x2 a x2 0則在00.而x1 x2 0 所以x1 a x1 x2 a x2 0 則在x 根... 文唐海置 單調函式 一般地,設函式f x 的定義域為i 如果對於屬於i內某個區間上的任意兩個自變數的值x1 x2,當x1f x2 那麼就是f x 在這個區間上是減函式。如果函式y f x 在某個區間是增函式或減函式。那麼就說函說y f x 在這一區間具有 嚴格的 單調性,這一區間叫做y f x 的單...關於分段函式單調性問題,關於分段函式單調性問題
有關雙勾函式單調性的證明,對勾函式單調性的求法與證明。
什麼是單調函式,什麼是函式的單調性?