cosx不定積分的公式推導過程,1 cos x不定積分的公式推導過程

時間 2021-08-30 10:05:42

1樓:我是一個麻瓜啊

∫1/cos²xdx=tanx+c。c為積分常數。

解答過程如下:

∫dx/(cosx^2)

=∫(sinx^2+cosx^2)dx/cosx^2=∫(sinxd-cosx)/cosx^2+∫dsinx/cosx=∫sinxd(1/cosx)+∫dsinx/cosx=sinx/cosx-∫dsinx/cosx+∫dsinx/cosx+c

=tanx+c

擴充套件資料:常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。

2樓:匿名使用者

∫dx/(cosx^2)

=∫(sinx^2+cosx^2)dx/cosx^2=∫(sinxd-cosx)/cosx^2+∫dsinx/cosx=∫sinxd(1/cosx)+∫dsinx/cosx=sinx/cosx-∫dsinx/cosx+∫dsinx/cosx+c

=tanx+c

滿意請採納!

3樓:匿名使用者

∫cos³x/(1+sin²x)dx=∫cos²x/(1+sin²x)dsinx

=∫(1-sin²x)/(1+sin²x)dsinx=∫2/(1+sin²x)-1dsinx

=2arctansinx-sinx+c

怎樣求1/cosx的不定積分

4樓:破碎的沙漏的愛

解答如下:

secx=1/cosx

∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx

=∫1/(1-sinx的平方)dsinx

令sinx=t代人可得:

原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt

=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt

=-1/2ln(1-t)+1/2ln(1+t)+c

將t=sinx代人可得

原式=[ln(1+sinx)-ln(1-sinx)]/2+c

相關公式:

不定積分的解題技巧:

1、利用不定積分概念性質和基本積分公式求不定積分

這種方法的關鍵是深刻理解不定積分的概念、基本性質,熟練掌握、牢記不定積分的基本積分公式,當然包括對微分公式的熟練應用。

2、利用換元積分法求不定積分

換元積分法是求不定積分最主要的方法之一,有兩類,第一類換元積分法通常稱「湊」微分法,實質上是複合函式求導運算的逆運算,通

過「湊」微分,使新的積分形式是基本積分公式或擴充的積分公式所具有的形式,從而求得所求積分。

第二類換元積分法是直接尋找代換x=φ(t),φ(t)單調

可導,使代換後的新積分容易求出,一般來說尋找代換x=φ(t)不是一件容易的事,這就註定不定積分的計算一般都很困難,只有通過大量練

習才能熟練掌握。

3、利用倒代換求不定積分

倒代換是換元積分法的一種,利用倒代換,常可消去被積函式的分母中的變數因子,或者化解被積函式,使不定積分容易求出。

4、有理函式的積分法

用待定係數法化被積函式為部分方式之和,再對每個部分分式逐項積分。

5樓:人文漫步者

想要求這樣一個不停積分首先可以看他是否收斂求導來判斷收斂是很有裨益

6樓:匿名使用者

做錯了 正確答案:ln | secx+tanx | +c 錯誤原因,換元的時候令x=sint ,此時dx=cost✖️dt

7樓:茹翊神諭者

可以使用拼湊法,

答案如圖所示

8樓:

∫ 1/cosx dx

=∫ cosx/ (cosx)^2 dx 上下同乘cosx

=∫ 1/(cosx)^2 d(sinx) 把cosxdx化為dsinx

=∫ 1/(1- (sinx)^2) d(sinx) 基本3角變換

換元讓sinx=u

原式=∫ 1/(1-u^2) du

=1/2 ∫ 1/(u+1) - 1/(u-1) du 化為部份分式

=1/2 (ln(u+1) - ln(u-1)) +c

=1/2 (ln(sinx+1) - ln(sinx-1)) +c 算到這步就可以了

=1/2 ln((sinx+1)/(sinx-1))+c 可以化成這樣

=ln [((sinx+1)/(sinx-1))^1/2]+c 甚至這樣

9樓:匿名使用者

(sin^2x+cos^2x)/cosx=d(sinx)+sinxd(ln|cosx|)

分部積分

sinx+sinxln|cosx|+d(cosx)/|cosx|=sinx+sinxln|cosx|+d(ln|cosx|)=sinx+sinxln|cosx|+ln|cosx|

10樓:匿名使用者

sin2a=2sinacosa,1=sina^2+cosa^2,lna-lnb=lna/b

不定積分公式推導,不定積分公式推導

不定積分公式 f x dx f x c。其中 叫做積分號,f x 叫做被積函式,x叫做積分變數,f x dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。不定積分的積分公式主要有如下幾類 含ax b的積分 含 a bx 的積分 含有x 2 2的積分 含有ax 2 b a...

不定積分公式的問題,不定積分的公式問題 求助

你是習慣了內地的寫法吧 內地一般的自然對數寫作lnx,反三角函式都是arcsinx arccosx等等.而以10為底的對數則是logx 而採用logx表示自然對數的通常都是歐美等西方國家,因為這個表示式比較常用 有時還會寫作log e x e是底數部分 反而以10為底的對數的寫法,他們有時會寫作lo...

COSx的三次方求不定積分,求不定積分 (cosx)的三次方dx。 要求 要有最詳細的過程,不要簡寫

cosx的三次方的不定積分為sinx 1 3 sinx 3 c。解 cosx 3 dx cosx 2 cosx dx cosx 2dsinx 1 sinx 2 dsinx 1 dsinx sinx 2 dsinx sinx 1 3 sinx 3 c 即cosx的三次方的不定積分為sinx 1 3 s...