1樓:匿名使用者
定積分確切的說是一個數,或者說是關於積分上下限的二元函式,也可以成為二元運算,可以這樣理解∫[a,b]f(x)dx=a*b,其中*即為積分運算(可以類比簡單的加減運算,只不過這時定義的法則不一樣,加減運算是把二維空間的點對映到一維空間上一個確定的點,定積分也一樣,只不過二者的法則不一樣); 不定積分也可以看成是一種運算,但最後的結果不是一個數,而是一類函式的集合. 對於可積函式(原函式是初等函式)存在一個非常美妙的公式 ∫[a,b]f(x)dx=f(b)-f(a) 其中f'(x)=f(x)或∫f(x)dx=f(x)+c 最後附上一句,積分這一章難度較大,要學好這一章首先要把微分運算弄得很清楚,同時常用的公式也要記.而且有些定積分是不能通過牛頓-萊布尼茨公式計算的,如∫[0,∞]sinx/xdx=π/2(用留數算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重積分極座標代換算的),以上兩種積分的原函式都不能用初等函式表示,因此也就不能用牛頓-萊布尼茨公式計算,當你不知道這些的時候可能花一年的功夫也沒有絲毫進展.
我當年就是深有感觸的,我是在高一入學前的暑假自學的微積分,高一的時候遇到一個定積分∫[0,π/2]dx/√(sinx),開始不知道這是一個超越積分,所以高一只要有空餘時間我就會計算這個定積分,直到高二學完伽馬函式後才計算出其值為(γ(1/4))^2/(2√(2π)),並由此得出不定積分∫dx/√(sinx)也是超越積分.常見的超越積分還有很多,尤其像那種三角函式帶根號的,多半都是超越的,自學時要注意。希望可以幫到你。
補充:這兩者是從不同角度定義的不同概念。 不定積分是一個函式的全體原函式,是一個函式族(函式的集合); 定積分是與函式有關的一個和式的極限,是一個實數。 從概念而言,這兩者是完全不同的、毫無關係的,或者說是風馬牛不相及的。
但是牛頓-萊布尼茲公式卻把它們聯絡起來,這就是這兩位先驅者的偉大之處,雖然在今人看起來並沒有多少深奧,倒反而有人會把這兩個概念混淆在一起。如果當初這兩個概念也那麼容易相混的話,大概等不到牛頓出生,微積分早被創立了。 牛頓-萊布尼茲公式告訴我們,定積分那個極限,等於被積函式的原函式在積分割槽間右端點的值減去左端點的值,定積分也就與原函式有了聯絡,定積分之所以叫定積分大概也是因為這個原因。
但是取這個名也有***,因為不定積分比定積分只多了一個「不」字,一些人就認為它們是一樣的或者是稍有區別的,這大概也是今天這個問題被提出的原因。 建議學習高等數學的同學們,不要問不定積分與定積分有什麼區別,而是把它們作為兩個完全不同的概念分別學習好,再也不要搞混在一起。
2樓:仁俊慎涵暢
∫e^(x^1/2)
dx令x=y^2,然後原式=∫2ye^y
dy=2ye^y-2∫e^ydy=2(y-1)e^y,然後把y換回x去就行了。
∫(tanx)^7*(secx)^4
dx化成1/2*∫((sinx)^2)^3/(1-(sinx)^2)^6
d((sinx)^2)
然後換元,(sinx)^2=y,然後1-y=z,再然後句非常容易做了,網上寫式子不方便,自己逐項積分,一算就出來。
∫arcsin(2x)
dx分步積分吧~~真的非常容易∫arcsin(2x)
dx=xarcsin(2x)-2x^2/(1-4x^2)^0.5然後直接就出答案了~~
3樓:你的眼神唯美
對數恆等式。不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。e^(2lnx)=e^(ln(x^2))=x平方。。那麼∫x平方dx=(x立方)/3 +c常數。
關於不定積分的問題 20
4樓:三城補橋
1/lnx沒有直接的積分式,這類問題叫做「積不出問題」。但是也可以算出來,套用常見的麥克勞林公式中的1/(1+x)這個,把1+x作替換,換成lnx就行。
這個瞭解就行了,考研中不會出現這種題目的。
5樓:匿名使用者
令 u = x^(1/6), 則 x = u^6
i = ∫√xdx/[1+x^(1/3)] = ∫u^3(6u^5du)/(1+u^2)
= 6∫[(u^8+u^6)-(u^6+u^4)+(u^4+u^2)-(u^2+1)+1]du/(1+u^2)
= 6∫[u^6-u^4+u^2-1+1/(1+u^2)]du
= 6(u^7/7-u^5/5+u^3/3-u+arctanu) + c
= (6/7)x^(7/6)-(6/5)x^(5/6)+2x^(1/2)-6x^(1/6)+6arctanx^(1/6) + c
不定積分的問題
6樓:匿名使用者
這個是不定積分,等號左邊=ln|x|+c,右邊=1+ln|x|+c,對任意常數c來說沒區別。
關於不定積分的問題,正確答案可有兩個嗎?
7樓:匿名使用者
都沒有問題,結果是相通的
有好幾種寫法,都可以的。
求不定積分,求不定積分
令t sinx,則dt cosxdx,則dx dt cosx 原式 dx sinx cosx dt sinx cosx 2 dt t 1 t 2 答案 atan 1 1 x 2 1 2 c 1 第二類換元積分法 令t x 1 則x t 2 1,dx 2tdt原式 t 2 1 t 2tdt 2 t 2...
不定積分定義的問題,不定積分的小問題
性凡雁習蓮 不定積分概念 在微分學中我們已經知道,若物體作直線運動的方程是s f t 已知物體的瞬時速度v f t 要求物體的運動規律s f t 這顯然是從函式的導數反過來要求 原來函式 的問題,這就是本節要討論的內容。定義1已知f x 是定義在某區間上的函式,如果存在函式f x 使得在該區間內的任...
不定積分方法,不定積分的求法
1 第二類換元積分法令t x 1 則x t 2 1,dx 2tdt 原式 t 2 1 t 2tdt 2 t 2 1 dt 2 3 t 3 2t c 2 3 x 1 3 2 2 x 1 c,其中c是任意常數 2 第一類換元積分法原式 x 1 1 x 1 dx x 1 1 x 1 d x 1 2 3 x...