x 0時,limxsin 1 x是0嗎超疑惑

時間 2021-07-09 18:08:19

1樓:早早逗奶

x→0時,limxsin(1/x)是0。

解析:重要極限limsinx/x=1當x趨於0是成立,lim(sin1/x)/(1/x)當x趨於0時,1/x是趨於無窮的,

所以極限不相等。

x→0時,limxsin(1/x)是0也可以用極限定義證明。

擴充套件資料:

洛必達法則的使用條件:

1、分子分母都必須是可導的連續函式;

2、分子與分母的比值是0/0,或者是∞/∞,如果是這兩種情況之一,就可以使用。使用時,是分子、分母,各求各的導數,互不相干。

各自求導後,如果依然還是這兩種情況之一,繼續使用洛必達法則。直到這種情況消失,然後代入數值計算.1/∞ = 0,∞/常數 = ∞。

等價無窮小的代換:

1、如果只是簡單的比值關係,才可以替代,例如當x→0時,ln(1+x) / x。

2、如果分式的分子分母中有加減運算,一般都不可以代換。

例如,分子上sinx - x,分母上x²,當x→0時,就不可以代換。

3、簡單的加減運算也不可以代入,如1/sin²x - 1/tan²x,當x→0時,就不可以代換.

注意:求極限是高等數學中最重要的內容之一,也是高等數學的基礎部分,因此熟練掌握求極限的方法對學好高等數學具有重要的意義。洛比達法則用於求分子分母同趨於零的分式極限。

若條件符合,洛必達法則可連續多次使用,直到求出極限為止。

洛必達法則是求未定式極限的有效工具,但是如果僅用洛必達法則,往往計算會十分繁瑣,因此一定要與其他方法相結合,比如及時將非零極限的乘積因子分離出來以簡化計算、乘積因子用等價量替換等等。

2樓:

x→0時,limxsin(1/x)是0,洛必塔法則算的重要極限limsinx/x=1當x趨於0是成立,lim(sin1/x)/(1/x)當x趨於0時,1/x是趨於無窮的,

所以極限不相等

x→0時,limxsin(1/x)是0也可以用極限定義證明,你可以試試

3樓:匿名使用者

利用無窮小的性質:無窮小與有界函式的乘積為無窮小。

當x趨於0時,x為無窮小,sin(1/x)為有界函式,所以xsin(1/x)的極限等於0.

重要極限:sinx/x的極限是1,這是在x趨於0下是成立的。

limx→0(xsin1/x)的值,大神解答。

4樓:drar_迪麗熱巴

x→0時,limx是無窮小,sin1/x為有界量.

因此兩者之積是無窮小量=0.

有界量乘以無窮小量仍是無窮小.

無窮小量是數學分析中的一個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。

無窮小量是數學分析中的一個概念,在經典的微積分或數學分析中,無窮小量通常它以函式、序列等形式出現。無窮小量即以數0為極限的變數,無限接近於0。

確切地說,當自變數x無限接近x0(或x的絕對值無限增大)時,函式值f(x)與0無限接近,即f(x)→0(或f(x)=0),則稱f(x)為當x→x0(或x→∞)時的無窮小量。特別要指出的是,切不可把很小的數與無窮小量混為一談。

5樓:我是一個麻瓜啊

0。limx→0(xsin1/x),limx→0(x)乘以limx→0(sin1/x),sin1/x是正弦函式,是一個有值域的有界函式,0乘以有界,都為0。

有界函式是設f(x)是區間e上的函式,若對於任意的x屬於e,存在常數m、m,使得m≤f(x)≤m,則稱f(x)是區間e上的有界函式。其中m稱為f(x)在區間e上的下界,m稱為f(x)在區間e上的上界。

6樓:韓苗苗

limx→0(xsin1/x)d的極限不存在,

x→∞時,

x=1/(kπ)→0,sin(1/x)→0,原式→0

x=1/[(2k+1/2)π]→0,sin(1/x)→1,原式→1

x=1/[(2k-1/2)π]→0,sin(1/x)→-1,原式→-1

x從不同方向趨近時,值不相同,所以原式極限不存在。

擴充套件資料

極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。

數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

7樓:薔祀

結果等於 1。

換元,令(1/x) =t ,

則 x→+∞等價於 t →0,

x·sin1/x= (sin t /t) =1。

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函式的一門學科。

所謂極限的思想,是指「用極限概念分析問題和解決問題的一種數學思想」。

擴充套件資料

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。

在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。如:

(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。

(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。

(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。

(4)數項級數的斂散性是用部分和數列 的極限來定義的。

(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。

參考資料

8樓:匿名使用者

極限為0

原因:定理:無窮小乘有界函式仍為無窮小。

無窮小:極限為零的函式稱為無窮小函式(此

題中x為無窮小)

有界函式:記住幾個常見的sinx,cosx,sin1/x,cos1/x

9樓:別樣de時光

「limx→0(x)乘以limx→0(sin1/x)

0乘以有界,或者按你思路limx→0(x乘以1/x)都為0」

10樓:匿名使用者

|xsin(1/x)|<=|x|

所以, 是0

11樓:展翅翱翔

這等於1啊!用兩個重要極限,變形limxsin1/x=lim(sin1/x)/(1/x)=1

lim(x→0)xsin(1/x) 圖中過程對嗎

12樓:匿名使用者

沒有問題。。。是**不對嗎?

sin(1/x)是有界函式

無窮小乘有界函式=無窮小

x,若x0 f x ax b,若x0在x 0點可導,求a,b

分段函式求導,必須要按定義去求 這兒右導數 lim f x f 0 x f 0 對應的是f x ax b,若x 0,即f 0 b,而b 1 lim sinx x 1 x lim sinx x x 2 lim cosx 1 2x lim sinx 2 0 千萬不能像樓上那樣求導去做。 f x sinx...

f x 在x 0處連續,且x 0時,lim f 2x f xxA 常數求證f x 在x 0處可導,且f 0 A

看了看幾位的討論,出來為樓主說句話,兩位答題的朋友都忽略了一個重要的問題 limu和limv存在是可以推出lim u v 或者lim u v 存在,但是反過來是不對的,由lim u v 存在得不到limu和limv同時存在的結論。最常見的就是 無窮減無窮 的不定型了,不定型可以存在極限,但是分開每一...

當x 0時,1 x 1 x與x為什麼是等價無窮小,該怎麼算

當x 0時,1 x 1 x x 2x x 1 x 1 x 2 1 x 1 x 1,所以其是等價無窮小。等價無窮小是無窮小的一種。在同一點上,這兩個無窮小之比的極限為1,稱這兩個無窮小是等價的。等價無窮小也是同階無窮小。從另一方面來說,等價無窮小也可以看成是泰勒公式在零點到一階的泰勒公式。當x 0時 ...