1樓:嘉佑營新潔
如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
(1)等比數列的通項公式是:an=a1*q^(n-1)
若通項公式變形為an=a1/q*q^n(n∈n*),當q>0時,則可把an看作自變數n的函式,點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。
(2)求和公式:sn=na1(q=1)
sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n
即a-aq^n)
(前提:q不等於。
任意兩項am,an的關係為an=am·q^(n-m)
(3)從等比數列的定義、通項公式、前n項和公式可以推出:
a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈
(4)等比中項:aq·ap=ar*2,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底數數後構成一個等差數列;反之,以任一個正數c為底,用一個等差數列的各項做指數構造冪can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是「同構」的。
性質:①若。
m、n、p、q∈n*,且m+n=p+q,則am·an=ap·aq;
②在等比數列中,依次每。
k項之和仍成等比數列。
「g是a、b的等比中項」「g^2=ab(g≠0)」.
等比數列前n項之和sn=a1(1-q^n)/(1-q)
在等比數列中,首項a1與公比q都不為零。
注意:上述公式中a^n表示a的n次方。
等比數列在生活中也是常常運用的。
如:銀行有一種支付利息的方式---複利。
即把前一期的利息赫本金價在一起算作本金,在計算下一期的利息,也就是人們通常說的利滾利。
按照複利計算本利和的公式:本利和=本金*(1+利率)^存期。
等比數列問題,等比數列的計算問題
洗澡不刷牙 解這類題有個技巧,我們只要稍微的把題中的條件變形一下就ok了,根據等比數列的性質,a1 am a2 a m 1 a3 a m 2 也就是說在等比數列中,兩底數和只要相同,那麼其乘積也就相同,體現在這個題中,我們就可以把a1 a9 256 a4 a6 1 9 4 6,底數和相同 這樣我們就...
等比數列求和公式,等比數列求和公式推導 至少給出3種方法
我是一個麻瓜啊 1 q 1時,sn a1 1 q n 1 q a1 anq 1 q 2 q 1時,sn na1。a1為首項,an為第n項,q為等比 sn a1 1 q n 1 q 的推導過程 sn a1 a2 an q sn a1 q a2 q an q a2 a3 a n 1 sn q sn a1...
等比數列問題
2的20次冪。設 a3 a6 a9.a30 x q的10次冪,則,a2 a5 a8.a29 x a1 a4 a7.a28 x q的10次冪 a1 a2 a3 a30 a1 a4 a7.a28 a2 a5 a8.a29 a3 a6 a9.a30 x q的10次冪 x x q的10次冪 x x x 2 ...