1樓:她是朋友嗎
設二次函式:
f(x)=ax²+bx+c
∵f(0)=0
∴c=0
∴f(x)=ax²+bx
f(x+1)=a(x+1)²+b(x+1)=ax²+2ax+a+bx+b
=ax²+(2a+b)x+a+b
=f(x)+x+1
∴ax²+(2a+b)x+a+b=ax²+bx+x+1ax²+(2a+b)x+a+b=ax²+(b+1)x+1係數對應相等
∴{2a+b=b+1
{a+b=1
∴{a=1/2
{b=1/2
∴f(x)=1/2x²+1/2x
設二次函式:
f(x)=ax²+bx+c
∵f(0)=0
∴c=0
∴f(x)=ax²+bx
f(x+1)=a(x+1)²+b(x+1)=ax²+2ax+a+bx+b
=ax²+(2a+b)x+a+b
=f(x)+x+1
∴ax²+(2a+b)x+a+b=ax²+bx+x+1ax²+(2a+b)x+a+b=ax²+(b+1)x+1係數對應相等
∴{2a+b=b+1
{a+b=1
∴{a=1/2
{b=1/2
∴f(x)=1/2x²+1/2x =1/2(x+1/2)^2-1/8值域【-1/8,+∞)
2樓:大學數學王子
f(0)=0
c=0f(x+1)-f(x)=x+1.
a(x+1)^2+b(x+1)+c-ax^2-bx-c=x+1a(2x+1)+b=x+1
2a=1
a+b=1
a=1/2
b=1/2
f(x)=1/2x^2+1/2x
值域【-1/8,+∞)
設二次函式f x ax2 bx c,函式F x f x x的兩個零點為m, mn 若m 1,n 2,求不等式F(x 0的解集
體育wo最愛 f x ax 2 bx c x ax 2 b 1 x c有兩個零點m 1,n 2,代入就有 a b 1 c 0 a b c 14a 2 b 1 c 0 4a 2b c 2兩式相減得到 3a 3b 3 所以,a b 1 所以,b 1 a 則,c 1 a b 1 a 1 a 2a所以,f ...
已知當x 5時,二次函式f(x)ax 2 bx c取得最小值,等差數列an的前n項和sn f(n)
解 由題意,b 2a 5,即b 10a an為等差數列,則sn a1 an n 2 f n an 2 bn c,所以c 0,a1 an 2axn 2b,n 2時,a1 a2 4a 2b a b 7,即3a b 7 和 聯立得a 1,b 10,代人 得 an 2n 11.等差數列和的表示式中常數項必定...
已知函式f x x 2 bx c,且f
由f 1 0知 1 b c 0,b c 1 1 a b c cr a b 1,3 2 若f x 為偶函式,則b 0,所以 c 1,f x x 1,對稱軸為y軸,最小值為f 0 1,最大值為f 3 8 3 要使函式f x 在區間c上不單調,則f x x bx c的對稱軸x b 2在區間c 1,3 內,...