1樓:魚躍紅日
sinx+cosx=1/5 (1)平方sin²x+2sinxcosx+cos²x=1/251+2sinxcosx=1/25
sinxcosx=-12/25
1-2sinxcosx=49/25
(sinx-cosx)²=(7/5)²
sinx-cosx=±7/5 (2)聯立(1)(2) sinx=4/5 cosx=-3/5或sinx=-3/5 cosx=4/5
所以tanx=sinx/cosx=-4/3或-3/4
2樓:廣州力撲智慧
(sinx)^2+(cosx)^2=1(sinx+cosx)^2=(sinx)^2+(cosx)^2+2sinxcosx=1/252sinxcosx=-24/25sinxcosx=-12/25聯立方程:sinx+cosx=1/5sinxcosx=-12/25構造方程,sinx與cosx是這方程的x^2-1/5*x-12/25=0x1=4/5x2=-3/5x屬於(0,π)sinx=4/5cosx=-3/5tanx=sinx/cosx=-4/3
已知sinx+cosx=1/5,x屬於,求tanx的值
3樓:我不是他舅
cosx=1/5-sinx
兩邊平方
cos²x=1-sin²x=1/25-2/5*sinx+sin²xsin²x-1/5*sinx-12/25=0(sinx-4/5)(sinx+3/5)=0sinx=4/5,sinx=-3/5
則對應的
專cosx=-3/5,cosx=4/5所以屬tanx=sinx/cosx=-4/3或-3/4
4樓:超級大超越
此類題型步驟:
①平方②變成倍角
③求出倍角的三角函式
④根據單倍角的取值範圍確定二倍角的範圍,從而確定出二倍角的三角函式的值
⑤根據萬能公式求出tanx
5樓:匿名使用者
sinx+cosx=1/5
tanx+1=(1/5)secx
25(tanx+1)^2=(secx)^224(tanx)^2+50tanx+24=0tanx=(-50+14)/48 or (-50-14)/48=-3/4 or -4/3
已知sinx+cosx=1/5,x屬於,求tanx的值
6樓:匿名使用者
由sinx+cosx=1/5,得sinx=1/5-cosx代入sin2x+cos2x=1得(5cosx-4)(5cosx+3)=0
∴cosx=4/5或cosx=-3/5
當cosx=4/5時,得sinx=-3/5,所以tanx=-3/4
當cosx=-3/5時,sinx=4/5,所以tanx=-4/3沒有規定x的範圍版,所以有兩權個值
7樓:匿名使用者
sinx+cosx=1/5
(sinx)^du2+(cosx)^2=1(sinx+cosx)^2
=(sinx)^2+(cosx)^2+2sinxcosx=1/25
2sinxcosx=-24/25
sinxcosx=-12/25
聯立方zhi程dao
內:容sinx+cosx=1/5
sinxcosx=-12/25
構造方程
,sinx與cosx是這方程的
x^2-1/5*x-12/25=0
x1=4/5
x2=-3/5
x屬於(0,π)
sinx=4/5
cosx=-3/5
tanx=sinx/cosx=-4/3
已知函式f x sin 2x 2sinxcosx cos 2x,x R
你好 1 f x 0.5 1 cos2x sin2x 0.5 1 cos2x sin2x cos2x 2sin 2x 4 所以最小正週期為 t 2 2 2 因為函式y sinx在x 2k 2處取最大值,所以 令2x 4 2k 2 x k 3 4 k為整數 3 可以由y sinx,x r先把橫座標變為...
已知sinx cosx 1 2,則sin三次方x cos三次
1 若是求sin x cos x的值 解 sin x cos x sinx cosx sin x cos x sinxcosx sinx cosx 1 sinxcosx 因為 sinx cosx 1 2,所以 sinx cosx 1 4,1 2sinxcosx 1 4 sinxcosx 3 8 而因...
已知x是三角形的內角,且sinx cosx 1 5,求tanx的值
解 sinx cosx 1 5 sinx cosx 1 25 sin x cos x 2sinxcosx 1 25 1 2sinxcosx 1 25 sinxcosx 12 25 x是三角形內角,sinx恆 0,又 12 25 0,因此cosx 0,sinx cosx 0 sinx cosx sin...