高等數學極限問題。有界函式乘以無窮大是什麼?有可能是無窮小嗎?有哪幾種情況?說法不是很規範,但是

時間 2021-08-30 10:36:08

1樓:墨汁諾

有界函式在求極限是就看成一個常數就好,乘以無窮大還是無窮大。

有界函式乘以無窮小,還是無窮小,這是正確的。

有人仿效無窮小的這個性質,認為有界函式乘以無窮大,仍然是無窮大。而這個玩意當然就是錯誤的。例如這個有界函式其實是無窮小的話,那麼乘積不一定是無窮大。

例如當x→0的時候,f(x)=0是有界函式,g(x)=1/x是無窮大,但是f(x)*g(x)=0是無窮小。所以有界函式乘某個函式,乘積是無窮小,這個函式不一定是無窮小。

2樓:

結果是任意的,即四種可能:無窮大、無窮小、極限存在但非零、極限不存在也不是無窮大。

=-------------

有界函式可以是一個存在極限的函式(這個極限可以是0也可以是任意非零數),也可以是無窮大,也可以是有界但不存在極限且不是無窮大,這樣拆分為:無窮小乘以無窮大,無窮大乘以無窮大,有非零極限的函式乘以無窮大,極限不存在也不是無窮大的函式乘以無窮大。其中的“無窮大乘以無窮大,有非零極限的函式乘以無窮大”的結果是無窮大,另外兩種情況還要繼續討論。

無窮小乘以無窮大時的結果有可能是無窮小,比如:x→0時,x^2乘以1/x。

無窮大乘以一個有界函式還是無窮大嗎

3樓:韓苗苗

這句話不正確。

舉反例如下:當x趨於無窮時,x為無窮大,y=sin(1/x)為有界函式,版然而x乘以sin(1/x)時,權極限等於1,這時候結果就不再是無窮大了。

擴充套件資料

在集合論中對無窮有不同的定義。德國數學家康托爾提出,對應於不同無窮集合的元素的個數(基數),有不同的“無窮”。兩個無窮大量之和不一定是無窮大,有界量與無窮大量的乘積不一定是無窮大(如常數0就算是有界函式),有限個無窮大量之積一定是無窮大。

設函式f(x)在x0的某一去心鄰域內有定義(或|x|大於某一正數時有定義)。如果對於任意給定的正數m(無論它多麼大),總存在正數δ(或正數x),只要x適合不等式0<|x-x0|<δ(或|x|>x,即x趨於無窮),對應的函式值f(x)總滿足不等式|f(x)|>m,則稱函式f(x)為當x→x0(或x→∞)時的無窮大。

在自變數的同一變化過程中,無窮大與無窮小具有倒數關係,即當x→a時f(x)為無窮大,則1/f(x)為無窮小;反之,f(x)為無窮小,且f(x)在a的某一去心鄰域內恆不為0時,1/f(x)才為無窮大。

4樓:匿名使用者

不一來定 例如 x為無窮大當x區域無窮時,自y=sin(1/x)為有界函式bai,那麼當x乘以dusin(1/x)時等於1,這zhi時候不再是無窮大dao了。

有界函式中,包括了無窮小這種情況。 而無窮小這種有界函式和無窮大相乘,結果不一定是無窮大。可以是無窮大,也可以是無窮小,還可以是任何有限常數或其他極限不存在的情況。

極限可能是0,可能是其他有限常數,也可能是無窮大,還可能是其他極限不存在的情況。 有界函式乘無窮大,並不是個有具體結果的東西。 這不像是有界函式乘無窮小還是無窮小,那麼結果一定。

5樓:橙

肯定不一定啊,舉個最簡單的反例:

x->∞的時候,

y=x是無窮大吧

y=0是有界的吧,

那麼你說y=x*0是無窮大嗎?

6樓:匿名使用者

當然不一定copy

。第1,無窮小也是有界bai函式。du所以如果無窮大乘以一個是zhi無窮小的有界函式,那麼結dao果可能是無窮小,無窮大,或其他極限情況。不確定。

第2,即使這個有界函式不是無窮小,無窮大和有界函式相乘,也有可能是無界的非無窮大函式。

例如當x→∞的時候,x是無窮大,sinx是有界函式。而xsinx是無界的非無窮大函式。並不是無窮大。

所以這個設想是錯誤的。

有界函式除了乘以無窮小等於0,還乘以什麼可以等於0?

7樓:暴血長空

沒有了,要有也是1/無窮大=0。注意∞乘有界並不=無窮小的,xcosx在x趨近∞的時候不等於0而是無界

高等數學極限問題

愛忘了 你錯在 當lim a b lima limb 這個等式成立是有條件的 那就是lima和limb都存在 lim3 x 2的極限不存在,故你的第3個等號是錯的。解 lim sin3x xf x x 3 0,故 sin3x xf x x 3 趨於0 sin3x xf x x 3 f x x 2 s...

關於高等數學極限的問題,關於高等數學中極限的問題

表示在前後是等價無窮小,在運算時可以替換比如sinx x 在x 0時就可以有sinx x x x 1但是在等價無窮小之間做加減運算時不能替換 x 0時 sinx x x 2 x x x 2 0是不對的而是等於 1 2 你再深入學習就會知道了 等價無窮小會使你的極限運算更簡單 就是說,當變數x 0時,...

高等數學極限問題,高等數學的極限定義是什麼意思?

玄色龍眼 你每次把分子的sinx用x替換的時候都是錯的,都捨去會對結果產生影響的x 3的項,sinx x x 3 6 o x 3 請注意,所有的等量代換的原理都是極限的乘法法則,求a b的極限用c替換b就必須保證c b的極限是1。加法中的某一項不能隨便用等價無窮小去代換,因為換完並不能保證加法最終的...