1樓:小貝貝老師
解題過程如下:
f(y)=p(y微分得到f(y)=(0.5y^-0.5)(e^(y^0.5)+e^(-y^0.5))。
x=(+or-y^0.5),|jacobian|=|dx/dy|=1/2y^-0.5
f(y)=(0.5y^-0.5) (fx(y^0.5)+fx(-y^0.5))= (0.5y^-0.5)(e^(y^0.5)+e^(-y^0.5))
其實任意的隨機變數x,y=x^2的分佈都是(0.5y^-0.5)(fx(y^0.5)+fx(-y^0.5))下次直接套這個公式就好,上面的證明對於一切隨機變數x都適用。
性質:在概率論和統計學中,數學期望(mean)(或均值,亦簡稱期望)是試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一。它反映隨機變數平均取值的大小。
需要注意的是,期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合裡。
2樓:
(1)、ey=2e(x)=2
(2)、e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合裡。
對於均勻分佈函式,概率密度等於一段區間(事件的取值範圍)的概率除以該段區間的長度,它的值是非負的,可以很大也可以很小。
單純的講概率密度沒有實際的意義,它必須有確定的有界區間為前提。可以把概率密度看成是縱座標,區間看成是橫座標,概率密度對區間的積分就是面積,而這個面積就是事件在這個區間發生的概率,所有面積的和為1。所以單獨分析一個點的概率密度是沒有任何意義的,它必須要有區間作為參考和對比。
3樓:超記憶的旋律
解:(1).ey=2e(x)=2
(2)e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3
如有意見,歡迎討論,共同學習;如有幫助,請選為滿意回答!
設隨機變數x的概率密度是f(x)=e^-x,x>0,0,其他,求y=e^x的概率密度函式
4樓:angela韓雪倩
f(y)=p(yx=(+or-y^0.5),|jacobian|=|dx/dy|=1/2y^-0.5 f(y)=(0.
5y^-0.5) (fx(y^0.5)+fx(-y^0.
5))= (0.5y^-0.5)(e^(y^0.
5)+e^(-y^0.5))
任意的隨機變數x,y=x^2的分佈都是(0.5y^-0.5)(fx(y^0.5)+fx(-y^0.5))下次直接套這個公式就好,上面的證明對於一切隨機變數x都適用。
5樓:
y =e^x,所以x=lny,|dx/dy|=1/y,x>0,所以ln y>0,y>1,
所以f(y)=e^-(ln y) *1/y, y>1
6樓:量子時間
f(y)=p(y,=y)=p(e^x<=y)=p(x<=lny)=fx(lny)=1-e^(-lny)=1-1/y
f(y)=df(y)/dy=1/y^2(1 7樓:灆沺 f(x)=∫(下限0,上限+∞)f(x)dx,x>0 0,其他這鞋的好糾結,能看懂嗎?會積分嗎?不會再說下。 設隨機變數x的概率密度為 f(x)= e^-x,x〉0 0,x≤0 求⑴y=2x, ⑵y=e^-2x 的數學期望 8樓:demon陌 ^(1)、ey=2e(x)=2 (2)、e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合裡。 如果隨機變數只取得有限個值或無窮能按一定次序一一列出,其值域為一個或若干個有限或無限區間,這樣的隨機變數稱為離散型隨機變數。 9樓:匿名使用者 先求分佈函式,再求密度函式,最後求期望。 一個題為例 f(y)=p(y≤y)=p(2x≤y)=p(x≤y/2)= ∫[o,y/2]e^(-x)dx=1-e^(-y/2) y>0 =0 y≤0f(y)=f'(y)=(1/2)e^(-y/2) y>0=0 y≤0ey=∫yf(y)dy=2 10樓:匿名使用者 y=2x.y=e^-2x 11樓: 解:(1).ey=2e(x)=2 (2)e(y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3 如有意見,歡迎討論,共同學習;如有幫助,請選為滿意回答! 果果和糰子 fy y 0 首先求y的分佈函式fy y fy y p p p fx y 3 2 所以y 2x 3的概率密度為 fy y fx y 3 2 y 3 2 y 3 4 1 2 y 3 8 3 y 19 y 3 8 3 y 19 故fy y 0 聊慶赫連含煙 設隨機變數x的概率密度為f x 2... 務玉花姬戌 對概率密度函式積分就可以得到分佈函式,當x2 e x dx 1 2 e x 代入上限x,下限 1 2 e x 當x 0時,f x 1 2 e x 故分佈函式 f x f 0 上限x,下限0 1 2 e x dx f 0 1 2 e x 代入上限x,下限0 f 0 1 2 e x 1 2 ... 墨汁諾 1 求隨機變數x的密度fx x 邊沿分佈 fx x p y 1 p為f x,y 在直權線x 2,y 1,y x所圍區域積分,p y 1 為f x,y 在直線y x,y 1所圍區域積分,在本題情況,兩個區域的有效部分 即不為零部分 恰好相等,故積分值為1。概率意義是,隨機點分佈區域為0例如 p...設隨機變數x的概率密度為f x,設隨機變數X的概率密度為f x 1 1 x032 ,則2X的概率密度為
設連續型隨機變數x的概率密度為f x
設二維隨機變數 X,Y 的概率密度為f x,ye的 y次方,0《x《y 0,其他