1樓:
命題p:函式f(x)=lg(ax^2-x+a/16)的定義域為r , 即對任意x, g(x)=ax^2-x+a/16>0,
因此有a>0, 且delta=1-4a^2/16<0, 即 a>2命題q:不等式3^x-9^x0, 即t-t^2t-t^2=1/4-(t-1/2)^2
t=1/2時,右邊最大為1/4. 要使其恆成立,須有a>1/4.
如果p或q為真命題,即a>2或a>1/4
p且q為假命題, 即a<=2
綜合得:1/4
咦,答案不一樣? 2樓:匿名使用者 對於p命題:定義域為r所以ax^2-x+a/16恆大於0∴△<0,且a>0(如果a小於0開口向下肯定存在小於0的值)解得a>2或a<-2,a>2 對於q命題 設y=3^x-9^x 9^x=3^2x y=3^x-3^2x 設3^x=t,因為x>0,3^x∈(1,∞)∴y=t-t²,t∈(1,∞) 當t=1時取得最大值y=0但t取不到1 ∴y<0,所以a≥0 ∵如果p或q為真命題,p且q為假命題 當p真q假時 a<0∩a>2,為空集 當q假p真時 a≥0∩a≤2 ∴0≤a≤2 劍聖 對於命題p 因其值域為r,故x2 2x a 0不恆成立,所以 4 4a 0,a 1 對於命題q 因其是減函式,故5 2a 1,a 2 p或q為真命題,p且q為假命題,p真q假或p假q真 若p真q假,則a 若p假q真,則a 1,2 綜上,知a 1,2 故應填1 a 2 虎德文夏君 命題p 函式y... 你好,解答如下 1 f x x 1 x 4 當x 4,f 2x 5 5,所以x 5當1 x 4,f 3 5恆成立當x 1,f 5 2x 5,所以x 0綜上所述,解集為 2 若f x 4對x屬於r恆成立 可以由數軸知,x的取值在1和a之間時f 取到最小值,當a 1時,a 1 4,所以a 5當a 1時,... 解 1 由函式y log2 a 1 x a 1 x 1 的定義域為r。當a 1時,函式為y log2 1 其定義域為r 當a 1時,函式為y log2 2x 1 的定義域為 2x 1 0,即x 1 2,即函式定義域 x x 1 2 與題意不符 當a 1時,由函式y log2 a 1 x a 1 x ...已知命題p 函式y log5(x2 2x a)的值域為R
求設函式f xx 1x a1 當a 4時,求不等式f x5的解集 2 若f x4對x屬於R恆成立,求a的取值範圍
函式y log2 a 1 x a 1 x 1的定義域為R,則a的取值範圍