急求等差數列通項公式和前n項和公式的證明方法

時間 2021-08-13 15:14:33

1樓:匿名使用者

通項公式你用數學歸納法證明。

前n項和公式也可以用數學歸納法證明。

不過建議你採用觀察法:

sn = a1 + a2 + a3 +.....+ ansn = an + a(n-1)+........+ a1兩式相加,注意到共有n項,並且對應項均等於a1+an = 2*a1+(n-1)d,所以

2sn = n*(2*a1+(n-1)d)sn = n*(2*a1+(n-1)d)/2

2樓:匿名使用者

解:設數列是等差數列,其公差為d,d≠0,根據等差數列的定義:

an - a(n-1) = d

∴a2- a1= d

a3 - a2 = d

a4 - a3 = d

.....

an - a(n-1) = d

上述各式相加:

an - a1 = (n-1)d

即:an = a1 + (n-1)d

令sn = a1 + a2 +.....+ an根據an = a1 + (n-1)d,易知,a(n-k) + a(k+1) = a1+(n-k-1)d+a1+kd

=2a1+(n-1)d ,其中k = 0,1,2,3...n-1當n固定不變時,上式為定值

因此:sn = a1 + a2 + a3 +.....+ ansn = an + a(n-1)+........+ a1上式相加:

2sn= n[2a1+(n-1)d]

sn=na1 + n(n-1)d/2

根據an = a1 + (n-1)d

上式也可寫成:

sn =n(a1+an)/2

等差數列前n項和公式的推導有幾種方法

3樓:樑敏慧皇弘

=[1+a^(-1)

a^(-2)+……+a^(1-n)]

[1+4+7

……+(3n-2)]

前者為等比數列,公比為a^(-1)

後者為等差數列,公差為3

=[1-a^(-n)]/(1-a)

[1(3n-2)]*n/2

=[1-a^(-n)]/(1-a)

(3n-1)n/2

(裂項法求和

)這是分解與組合思想在數列求和中的具體應用.

裂項法的實質是將數列中的每項(通項)分解,然後重新組合,使之能消去一些項,最終達到求和的目的.

通項分解(裂項)如:

(1)1/n(n

1)=1/n-1/(n

1)(2)1/(2n-1)(2n

1)=1/2[1/(2n-1)-1/(2n1)](3)1/n(n

1)(n

2)=1/2[1/n(n

1)-1/(n

1)(n

2)](4)1/(√a

√b)=[1/(a-b)](√a-√b)

(5)n·n!=(n

1)!-n!

[例]求數列an=1/n(n

1)的前n項和.

解:設an=1/n(n

1)=1/n-1/(n

1)(裂項)

則sn=1-1/2

1/2-1/3

1/4…

1/n-1/(n

1)(裂項求和)

=1-1/(n1)=

n/(n

1)小結:此類變形的特點是將原數列每一項拆為兩項之後,其中中間的大部分項都互相抵消了。只剩下有限的幾項。

注意:餘下的項具有如下的特點

1餘下的項前後的位置前後是對稱的。

2餘下的項前後的正負性是相反的。

4樓:茂令慧鈔淵

(1)sn=a1+a2+......an-1+an也可寫成sn=an+an-1+......a2+a1兩式相加得2sn=(a1+an)+(a2+an-1)+......(an+a1)

=n(a1+an)

所以sn=[n(a1+an)]/2

(公式一)

(2)如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n-1)d代入公式公式一得

sn=na1+

[n(n+1)d]/2(公式二)

求數列通項公式an和前n項和sn的方法

5樓:呂詩慧

1,等差數列

an=a1+(n-1)d;an=sn-s(n-1)

sn=a1n+((n*(n-1))/2)d

2,等比數列

an=a1*q^(n-1);an=sn/s(n-1)

sn=(a1(1-q^n))/1-q

擴充套件材料

思路基本思路與方法: 複合變形為基本數列(等差與等比)模型 ; 疊加消元 ;連乘消元

思路一: 原式複合 ( 等比形式)

可令an+1 - ζ = a * (an - ζ )········① 是原式☉變形後的形式,即再採用待定係數的方式求出 ζ 的值, 整理①式 後得an+1 = a*an + ζ - a*ζ , 這個式子與原式對比可得,

ζ - a*ζ = b

即解出 ζ = b / (1-a)

回代後,令 bn =an - ζ ,那麼①式就化為bn+1 =a*bn , 即化為了一個以(a1 - ζ )為首項,以a為公比的等比數列,可求出bn的通項公式,進而求出 的通項公式。

思路二: 消元複合(消去b)

由 an+1 = a *an + b ········☉ 有

an = a* an-1 +b ··········◎

☉式減去◎式可得 an+1 - an = a *( an - an-1)······③

6樓:納喇亮鬱畫

snan=n

s(n-1)

a(n-1)=n-1

兩式相減得sn-s(n-1)

an-a(n-1)=1,即2an-a(n-1)=1即2an-2-a(n-1)

1=02(an-1)-(a(n-1)-1)=0則an-1/a(n-1)-1=1/2

所以數列{an-1}是以1/2為公比的等比數列又因為:s1

a1=2a1=1,所以a1=1/2,所以a1-1=-1/2所以an-1=-1/2*(1/2)^n-1=-(1/2)^n所以an=1-(1/2)^n

7樓:匿名使用者

等差數列:

公差通常用字母d表示,前n項和用sn表示

通項公式an

an=a1+(n-1)d

an=sn-s(n-1) (n≥2)

an=kn+b(k,b為常數)

前n項和

sn=n(a1+an)/2

等比數列:公比通常用字母q表示

通項公式

an=a1q^(n-1)

an=sn-s(n-1) (n≥2)

前n項和

當q≠1時,等比數列的前n項和的公式為   sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)

當q=1時,等比數列的前n項和的公式為   sn=na1

8樓:愛做夢

當n>=2時,a(n)=s(n+1)-s(n)當n=1時,a(n)=s(n)

注:最後需要將n=1代入n>=2時所求出的式子,如果滿足,則結論為a(n)=s(n+1)-s(n)n屬於n+ 如果不滿足,則n>=2時與n=1時需分開寫,用大括號連線!!!!!!

求s(n)的方法有很多種,公示法(就不用說了,用公式)、分組求和法(適用於通項公式可以拆成幾部分)、裂項求和法(cn=1/a(n)a(n+1)an為等差)、錯位相減法(cn=anbn an為等差,bn為等比)、倒推相加法(有對稱性的數列) 等,這些在網上是講不明白,但是都要觀察通項公式的特點來選擇!!!

這些都是我的老師講的,不知道你能不能用的上~~!!!

9樓:地球

sn=a1+a2+a3+...+an(公比為q)  q*sn=a1*q+a2*q+a3*q+...+an*q   =a2+a3+a4+...

+a(n+1)   sn-q*sn=a1-a(n+1)   (1-q)sn=a1-a1*q^n   sn=(a1-a1*q^n)/(1-q)   sn=(a1-an*q)/(1-q)   sn=a1(1-q^n)/(1-q)   sn=k*(1-q^n)~y=k*(1-a^x)

10樓:匿名使用者

可以看看這個教程,有具體的數列求解辦法:網頁連結

求數列前n項和的方法

11樓:夢色十年

等差數列的通項公式為:an=a1+(n-1)d前n項和公式為:sn=na1+n(n-1)d/2或sn=n(a1+an)/2 (n屬於自然數)。

a1為首項,an為末項,n為項數,d為等差數列的公差。

等比數列 an=a1×q^(n-1);

求和:sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)

推導等差數列的前n項和公式時所用的方法,就是將一個數列倒過來排列(反序),再把它與原數列相加,就可以得到n個(a1+an)

sn =a1+ a2+ a3+...... +ansn =an+ an-1+an-2...... +a1上下相加得sn=(a1+an)n/2

12樓:佼鑲巧

1、公式法求和

(1)等差數列

(2)等比數列q=i和q≠1

(3)幾個常見數列的前n項和:①1+2+3+…+n=[n(n+1)]/2

②1^2+2^2+3^2+…+n^2=[n(n+1)(2n+1)]/6

③1^3+2^3+3^3+…+n^3=[n(n+1)]^2/4

2、倒敘相加法:將一個數列倒過來排列(反序),當它與原來數列對應相加時,如有公因式可提,並且剩餘項的和易於求得則可用此法,它是等差數列求和公式的推廣。

3、錯位相減法(推導等比數列的前n項和公式時所用的方法)

4、裂項相消法:前提是數列中的每一項均能**成一正一負兩項,一般形如(其中是等差數列)的數列可用此法。常用裂項技巧有:

(1)1/[n(n+k)]=1/k[1/n-1/(n+k)](2)1/(√(n+k)+√n)=1/k[√(n+k)-√n] (3)1/[(2n+1)(2n-1)]=1/2[1/(2n-1)-1/(2n+1)] (4)1/[n(n+1)(n+2)]=1/2[1/n(n+1)-1/(n+1)(n+2)]

5、分組轉化求和:有一類數列,既不是等差,也不是等比,但若把數列的每一項分成多個項或把數列的項重新組合,就能轉化為等差或等比,從而利用等差、等比數列的求和公式解決。

13樓:胸中有書

求數列的前項和有多種方法,第一種是直接求根據公式,第二種是錯位相減還有裂項相消。

14樓:黑球乖乖

公式法. 用裂項相消法 用錯位相減法 用迭加法 用分組求和法

15樓:丹華

公式法. 用裂項相消法 用錯位相減法 用迭加法 用分組求和法

求和的通項公式都知道吧.

16樓:炫麗青春

sn=am(n-m)d

17樓:匿名使用者

#include

int main(void)

printf("sum=%f\n",sum);

return 0;}

高中數學,等差數列和等差數列前n項合的公式,性質

通式 a n a 1 n 1 d 注意 n是正整數 即 第n項 首項 n 1 公差 n是項數 前n項和公式 s n n a 1 n n 1 d 2或s n n a 1 a n 2 注意 n是正整數 相當於n個等差中項之和 等差數列前n項求和,實際就是梯形公式的妙用 上底為 a1首項,下底為a1 n ...

求等比數列和等差數列的通項公式方法,求數列和的方法

數列通項公式的求法 下面就幾種常見的數列的通項公式的求法作簡單的介紹,供參考。一 觀察法 觀察各項的特點,關鍵是找出各項與項數n的關係。二 公式法 當已知數列為等差或等比數列時,可直接利用等差或等比數列的通項公式,只需求得首項及公差公比。三 輔助數列法 這種方法類似於換元法,主要用於已知遞推關係式求...

等差數列an是遞增數列,前n項和為Sn,且a1,a3,a9成等比數列,S5 a

求通項麼?因為an a1 n 1 d sn n a1 1 2 n n 1 d a3 2 a1 a9 s5 a5 2所以 1 a1 2d 2 a1 a1 8d 2 5 a1 10d a1 4d 2a1 d 3 5 a1 d 0 又因為an遞增,所以d不為0 所以an 3 5 3 5 n 1 3 5 n...