1樓:匿名使用者
(1) 對於曲面積分,積分曲面為u(x,y,z)=0,如果將函式u(x,y,z)=0中的x,y,z換成y,z,x後,u(y,z,x)仍等於0,即u(y,z,x)=0, 也就是積分曲面的方程沒有變,那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(y,z,x)ds;如果將函式u(x,y,z)=0中的x,y,z換成y,x,z後,u(y,x,z)=0,那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(y,x,z)ds;如果將函式u(x,y,z)=0中的x,y,z換成z,x,y後,u(z,x,y)=0,那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(z,x,y)ds ,同樣可以進行多種其它的變換。
(2) 對於第二類曲面積分只是將dxdy也同時變換即可 ,比如:如果將函式u(x,y,z)=0中的x,y,z換成y,z,x後,u(y,z,x)=0,那麼在這個曲面上的積 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。
(3) 將(1)中積分曲面中的z去掉,就變成了曲線積分滿足的輪換對稱性:積分曲線為u(x,y)=0,如果將函式u(x,y)=0中的x,y換成y,x後,仍滿足u(y,x)= 0,那麼在這個曲線上的積分 ∫f(x,y)ds=∫f(y,x)ds;實際上如果將函式u(x,y)=0中的x,y換成y,x後,仍滿足u(y,x)=0,則意味著積分曲線關於直線y=x對稱 。第二類三維空間的曲線積分跟(2)總結相同同。
但第二類平面上的曲線積分不同∫f(x,y)dx=-∫f(y,x)dy.(注意前面多了一個負號)
(4) 二重積分和三重積分都和(1)的解釋類似,也是看積分域函式將x,y,z更換順序後,相當於將座標軸重新命名,積分割槽間沒有發生變化,則被積函式作相應變換後,積分值不變。
2樓:匿名使用者
其實就是兩個定積分同時做積分變數代換,你可以先把x換成t,再把y換成x,最後把t換成x就是了,其實就是用了定積分與j積分變數無關!還有輪換對稱性從區域講就是關於y=x對稱
3樓:學習的好麗友
被積函式本來是fxy變成了fyx,你在座標軸上畫一下就知道,因為關於x等於y對稱,原本在上面的積分跑到了下面,在下邊的積分跑到了上面,但是在整個積分割槽域相當於沒有變
4樓:匿名使用者
字元代表的東西沒必要看的那麼死,只是一個符號而已;x可以看成y,y也可以看成x,這就證明了...
5樓:匿名使用者
伶俐鬼,說的好,感謝
6樓:匿名使用者
值不變就是和變數符號無關,積分定義那裡有。輪轉對稱就是x換成y,積分部分實質沒什麼變化,只是形式變了。真題有一個題考過,這是積分裡面的技巧,往往這樣換之後可以處理掉抽象函式,從而順利積分。
關於二重積分的輪換對稱性問題
7樓:
二重積分輪換對稱性,一點都不難
8樓:援手
你說的復那幾種情況都制不是輪
換對稱性,首先所謂bai輪換對稱性就是,du如果zhi把f(x,y)中的x換成
daoy,y換成x後,f(x,y)的形式沒有變化,就說f(x,y)具有輪換對稱性。例如x^2+y^2有輪換對稱性,而2x+3y沒有輪換對稱性(因為換完後是2y+3x,和原來的不一樣)。下面說明輪換對稱性在二重積分中的應用,我們知道二重積分的積分割槽域的邊界可以用方程f(x,y)=0表示,如果這裡的f(x,y)具有輪換對稱性,那麼被積函式中的x和y互換後積分結果不變。
例如∫∫x^2dxdy,積分割槽域為圓周x^2+y^2=1,由於輪換對稱性可知∫∫x^2dxdy=∫∫y^2dxdy(這就是把被積函式中的x換成了y),因此積分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用極座標計算就簡單多了。有不明白的地方歡迎追問。
關於二重積分的輪換對稱性問題
9樓:莊之雲
不是這樣的,
1對於dxy是關於y軸對稱的區域,滿足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy
(所以如果f(x,y)是個關於x的奇函式的話,f(-x, y)= -f(x,y)
所以∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy= -∫∫f(x, y)dxdy
得到∫∫f(x,y)dxdy=0)
2如果dxy是關於y=x對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(y, x)dxdy
(所以如果積分函式滿足f(y,x)= -f(x,y),就能得出∫∫f(x,y)dxdy=0)
3如果dxy是關於y=-x對稱,那麼∫∫f(x,y)dxdy=∫∫f(-y, -x)dxdy
4關於dxy是原點對稱的區域,那麼∫∫f(x,y)dxdy=∫∫f(-x, -y)dxdy
請問這道二重積分題,如何確定有輪換對稱性的?
10樓:匿名使用者
你舉的例子,積分割槽域不關於y=x對稱,不具有輪換對稱性,除非補充定義,把下半部分算上去
如何理解輪換對稱性
11樓:不是苦瓜是什麼
積分輪換對稱性是指座標的輪換對稱性,簡單的說就是將座標軸重新命名,如果積分割槽間的函式表達不變,則被積函式中的x,y,z也同樣作變化後,積分值保持不變。
如果是二元函式在二維區域積分,其實任何情況下(不管d是否關於y=x對稱)都可以同時交換積分函式和積分割槽域的y和x,設d進行輪換之後的區域為d',則d'與d必定關於y=x對稱(d自身和d'自身未必關於y=x對稱)
但輪換的目的是為了簡化,也就是交換後得到的積分和原積分必須能夠通過疊加簡化。而兩個積分能夠直接疊加的前提是區域d和輪換後的區域d'是同一個區域,這就要求d關於y=x對稱
輪換對稱性跟被積函式自身的對稱性無關,而是與積分割槽域的輪換對稱性相關——如果積分割槽域滿足輪換對稱性,那麼滿足輪換對稱的兩個被積函式在此區間的積分相等。
二重積分輪換對稱性的應用主要是:輪換對稱後合併被積函式以簡化計算。
示例如下:
三重積分是x換y,y換z,z換x(當然,還有其它輪換次序),同樣是對積分函式和積分割槽域同時進行輪換,為了能夠直接疊加,還是要求輪換後的區域與原區域一致。
12樓:
二重積分輪換對稱性,一點都不難
13樓:霸道
輪換對稱關鍵在於輪換!!! 也就是說平面中 將x軸、y軸互換是否影響圖形的形狀? 所以平面中可以理解為關於x=y對稱。
但是在空間中則不然! 沒法用對稱去解釋輪換,你仔細想想,因為平面是無限大的,只要我讓一條直線和一個平面相交,就會有對稱性!所以空間中的輪換對稱性只能用座標軸的互換來理解!
即:在x+y+z=π中,xyz無論怎麼互換,都是不影響方程的!!! 而且你說的有錯誤,x+y+z=π平面不關於y=x=z 對稱???
顯然對稱! 而且還是很特殊的對稱,直線垂直平面! 檢視原帖》
求教大神!二重積分輪換對稱性是什麼意思?不懂啊!謝謝了
14樓:釋樹枝練雪
這個輪換對稱性本質就是x=y,即將所有x換成y,y換成x,所有相關的方程與換之
前的方程一模一樣。回如果在二重答積分中出現,一般會用到函式奇偶性或是積分割槽間的對稱性:在拉格朗日法求最值時也會有這種情況,,這時候只需新增方程x=y便能迅速求解極值點。
這好像是張宇那貨書上的名詞吧?
二重積分積分割槽域的問題,關於二重積分積分割槽域對稱性問題
離人怎挽啦咔咔 d1區域是在x軸下方以 a,0 為圓心,a為半徑的半圓,d d1區域是x軸上方y 2ax,x 2a與x軸所圍成的區域。答案中是把這個區域分成兩塊分別計算。這種題目,你只需要要看他的x,y屬於哪到哪,然後不要管大於小於,全部都等於,寫出式子然後畫圖,思路就很清晰了。 怒過之後 關於x是...
高等數學中二重積分關於對稱性問題疑惑謝謝
第一 你說的第一種情況叫做 輪換對稱性 輪換對稱性的使用條件是,將座標系互換,原積分割槽域不變,所以當y x對稱時,你可以試試把x,y互換,實質上積分割槽域是沒變的,只是座標軸的名字改了。第二 判斷兩個積分相等不相等,從兩個方面入手1 首先觀察,可以通過簡單的觀察找出積分割槽域對應相等的兩個區域。僅...
利用二重積分定義求解二重積分的問題
零奕聲校香 利用對稱性。積分割槽域是關於座標軸對稱的。被積函式也時關於座標軸對稱的。在對稱區域內,奇函式的積分為0.常數的積分 常數倍的積分割槽域的面積。就利用這些吧。1 x立方siny dxdy dxdy x立方siny dxdy 前面1項的積分 面積,後面1項的積分 0 dxdy 積分割槽域的面...