二重積分變上限求導,怎麼實現的,二重積分變上限求導,怎麼實現的。幫忙寫過程

時間 2021-06-14 21:51:41

1樓:假面

具體回答如圖:

二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。

平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分。

2樓:hao大森

這就是簡單的變上限定積分求導,如圖改個記號就很清楚了。

有許多二重積分僅僅依靠 直角座標下化為累次積分的方法難以達到簡化和求解的目的。當積分割槽域為圓域,環域,扇域等,或被積函式為:

等形式時,採用 極座標會更方便。

在直角座標系xoy中,取原點為極座標的極點,取正x軸為極軸,則點p的直角座標系(x,y)與極座標軸(r,θ)之間有關係式:

在極座標系下計算二重積分,需將被積函式f(x,y),積分割槽域d以及面積元素dσ都用極座標表示。函式f(x,y)的極座標形式為f(rcosθ,rsinθ)。為得到極座標下的面積元素dσ的轉換,用座標曲線網去分割d,即用以r=a,即o為圓心r為半徑的圓和以θ=b,o為起點的射線去無窮分割d,設δσ就是r到r+dr和從θ到θ+dθ的小區域,其面積為

3樓:小怪茄

第一步變積分次序怎麼變得

二重積分變上限求導,怎麼實現的。幫忙寫過程 5

4樓:匿名使用者

你好!這就是簡單的變上限定積分求導,如圖改個記號就很清楚了。經濟數學團隊幫你解答,請及時採納。謝謝!

5樓:

其實就是用變限積分求導公式,由於0到根號y上積分arctan[cos(3x+5根號)]dx實際上是y的函式,不妨令成f(y),根據變限積分求導公式,0到t²上積分f(y)dy的導數是2tf(t²),於是第一行二重積分對t求導得到的式子含因式2t,由於f(y)是0到根號y上積分arctan[cos(3x+5根號)]dx,f(t²)實際上就是把所有的y換成t²,得到第二行,由極限號,t>0,開方得第三行

6樓:夢嶼上的零星

倒數第三步應該是du

7樓:hao大森

這就是簡單的變上限定積分求導,如圖改個記號就很清楚了。

有許多二重積

分僅僅依靠 直角座標下化為累次積分的方法難以達到簡化和求解的目的。當積分割槽域為圓域,環域,扇域等,或被積函式為:

等形式時,採用 極座標會更方便。

在直角座標系xoy中,取原點為極座標的極點,取正x軸為極軸,則點p的直角座標系(x,y)與極座標軸(r,θ)之間有關係式:

在極座標系下計算二重積分,需將被積函式f(x,y),積分割槽域d以及面積元素dσ都用極座標表示。函式f(x,y)的極座標形式為f(rcosθ,rsinθ)。為得到極座標下的面積元素dσ的轉換,用座標曲線網去分割d,即用以r=a,即o為圓心r為半徑的圓和以θ=b,o為起點的射線去無窮分割d,設δσ就是r到r+dr和從θ到θ+dθ的小區域,其面積為

8樓:lai痞皮

應該是0-x gu du 吧

對二重積分怎么求導?有題目,對二重積分怎麼求導?有題目

如果是二重變上限積分,通常的做法有兩種 第一種,交換積分次序,把某一個積分算出來,化成一重積分做 第二種,通過座標變化,把多重積分化為單變數積分,常用的方法是極座標,球面座標系,柱面座標系等.不過你這個問題,第一種第二種都不算,更簡單,因為後面關於y的積分只和x有關係,所以dx的東西直接看成一個函式...

利用二重積分定義求解二重積分的問題

零奕聲校香 利用對稱性。積分割槽域是關於座標軸對稱的。被積函式也時關於座標軸對稱的。在對稱區域內,奇函式的積分為0.常數的積分 常數倍的積分割槽域的面積。就利用這些吧。1 x立方siny dxdy dxdy x立方siny dxdy 前面1項的積分 面積,後面1項的積分 0 dxdy 積分割槽域的面...

高數二重積分,高數二重積分 。。

聖克萊西亞 嚴格來說,並不是只有x對稱或y對稱才滿足積分為零的情況。由對稱性推導二重積分為零的原理,是出於以下的狀況 1 積分割槽域由於對稱性被分為相等的兩部分a1和a2,且存在一個一一對映,使得a1部分的任意一個面積微分ds1,在a2中存在唯一的面積微分ds2與之對應。2 對於相互對應的面積微分,...