高數二重積分問題,高數中二重積分

時間 2021-08-30 09:46:49

1樓:匿名使用者

可以啊。

i = ∫<0, 2>y^2 dy ∫<-2, -√(2y-y^2)> dx

= ∫<0, 2>y^2[2-√(2y-y^2)]dy

= 2∫<0, 2>y^2dy - ∫<0, 2>y^2√(2y-y^2)dy

= (2/3)[y^3]<0, 2> - i1 = 16/3 - i1

對於 i1, √(2y-y^2) = √[1-(y-1)^2], 令 y-1 = sint,

則 √[1-(y-1)^2] = cost

i2 = ∫<-π/2, π/2>(1+sint)^2 (cost)^2 dt

= ∫<-π/2, π/2>[1+2sint+(sint)^2](cost)^2 dt

= ∫<0, π/2>[2(cost)^2+2(sint)^2(cost)^2]dt

= ∫<0, π/2>[1+cos2t+(1/2)(sin2t)^2]dt

= ∫<0, π/2>[1+cos2t+1/4+(1/4)cos4t]dt

= [5t/4+(1/2)sin2t+(1/16)sin4t]<0, π/2> = 5π/8

i = 16/3 - 5π/8

2樓:退俏湊綱

減去小的面積,我直接用直角座標去對y軸投

3樓:重返

你看看是不是積分的上下限顛倒了,畢竟圖形在負半軸,很容易弄反。

4樓:小茗姐姐

直接計算

中途換元,

利用奇,偶性簡化計算,

高數中二重積分

5樓:紫月開花

這是bai我的理解:二重積分

和二次du積分的區別二重zhi積分是有關面積的dao積分,二次積版分是兩次單變數積分。 ①當權f(x,y)在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。

②可二次積分不一定能二重積分。如對[0,1]*[0,1]區域,對任意x∈[0,1]可定義一個對y連續的函式g(x,y)(y∈[0,1])∫g(x,y)dy=1.那麼∫dx∫g(x,y)dy有意義,一般地∫∫g(x,y)dσ沒意義。

③可以二重積分不一定能二次積分。區域s=。恆等函式f(x,y)=1,(x,y)∈s。

f在s上可以二重積分卻不能二次積分(先對x再對y求積分,在y=0那條線上積分無窮)。積分對調上面③的例子中積分對調了一個可以積分,一個不可以積分(先對y積分x固定時積分得到2/x^3.2/x^3對x(x屬於[1,無窮)可積分。

可對調x,y的情況是連續且絕對可積,對x或y求分步積分存在。特殊情況函式在有界閉區域連續可對調x,y,這時由於連續性函式在閉區域存在極值。積分變換一定要求變換後的積分割槽間與原來相同,且不能有重複積分的情況

高數二重積分問題 有題目有答案?

6樓:不能夠

第22題,其實要分為兩個區域,我圖上的d1和d2,主要我的是先定θ的範圍,後定r的範圍。過程如圖

就是x+y=1,x=1,y=1。這裡將x=rcosθ,y=rsinθ,代進去確定r的取值範圍。

7樓:匿名使用者

極座標變換 :

源x = rcosθ

,y = rsinθ

代入 x+y=1,得 r(cosθ+sinθ) = 1, r = 1/(cosθ+sinθ) ;

代入 x=1,得 rcosθ = 1, r = secθ ;

代入 y=1,得 rsinθ = 1, r = cscθ.

角度 θ 看圖, 對應 r = secθ 的是 0 ≤ θ ≤ π/4

對應 r = cscθ 的是 π/4 ≤ θ ≤ π/2.

高數二重積分問題 50

8樓:

這是我的理解:

二重積分和二次積分的區別

二重積分是有關面積的積分,二次積分是兩次單變數積分。

①當f(x,y)在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。

②可二次積分不一定能二重積分。如對[0,1]*[0,1]區域,對任意x∈[0,1]可定義一個對y連續的函式g(x,y)(y∈[0,1])∫g(x,y)dy=1.那麼∫dx∫g(x,y)dy有意義,一般地∫∫g(x,y)dσ沒意義。

③可以二重積分不一定能二次積分。區域s=。恆等函式f(x,y)=1,(x,y)∈s。f在s上可以二重積分卻不能二次積分(先對x再對y求積分,在y=0那條線上積分無窮)。

積分對調

上面③的例子中積分對調了一個可以積分,一個不可以積分(先對y積分x固定時積分得到2/x^3.2/x^3對x(x屬於[1,無窮)可積分。

可對調x,y的情況是

連續且絕對可積,對x或y求分步積分存在。特殊情況函式在有界閉區域連續可對調x,y,這時由於連續性函式在閉區域存在極值。

積分變換一定要求變換後的積分割槽間與原來相同,且不能有重複積分的情況

高等數學,二重積分問題

9樓:匿名使用者

例2圖見圖8-7.

射線y=x與弧y=√(4-x^2)交於點(√2,√2),直線x=√2把積分割槽域分為d1,d2,

可以嗎?

10樓:管懷法騫仕

看穿來入與穿出的曲線源啊

兩條曲線的焦點是(1,

bai1),採用先y後x的積分次序du,zhi那麼沿與y軸正方向dao平行的方向穿入閉合區域時先遇到y=根x,穿出時遇到曲線y=x平方,所以對y積分就是圖中的後半段表示式,下限就是穿入時的根x,上限就是穿出時的x平方,然後再對x軸進行一次積分,因為區域沿x軸的投影區間為0到1,所以dx的積分上下限就是0和1,瞭解了沒,親

高數二重積分問題

11樓:摯愛

這是我的理解:二重積分和二次積分的區別二重積分是有關面積的積分,二次積分是兩次單變數積分。 ①當f(x,y)在有界閉區域內連續,那麼二重積分和二次積分相等。

對開區域或無界區域這關係不衡成立。 ②可二次積分不一定能二重積分。如對[0,1]*[0,1]區域,對任意x∈[0,1]可定義一個對y連續的函式g(x,y)(y∈[0,1])∫g(x,y)dy=1.

那麼∫dx∫g(x,y)dy有意義,一般地∫∫g(x,y)dσ沒意義。 ③可以二重積分不一定能二次積分。區域s=。

恆等函式f(x,y)=1,(x,y)∈s。f在s上可以二重積分卻不能二次積分(先對x再對y求積分,在y=0那條線上積分無窮)。積分對調上面③的例子中積分對調了一個可以積分,一個不可以積分(先對y積分x固定時積分得到2/x^3.

2/x^3對x(x屬於[1,無窮)可積分。可對調x,y的情況是連續且絕對可積,對x或y求分步積分存在。特殊情況函式在有界閉區域連續可對調x,y,這時由於連續性函式在閉區域存在極值。

積分變換一定要求變換後的積分割槽間與原來相同,且不能有重複積分的情況

高數二重積分問題,題目如圖,為什麼那麼難!!!!!

12樓:nice世界最遠處

這道題你換下積分順序

將1/x

這樣積分就簡單了

高數問題,二重積分?

13樓:匿名使用者

被積函式為1時,二重積分=區域d的面積=半軸為2與1的橢圓域面積=π*2*1=2π。

注:橢圓域的面積=π*長半軸*短半軸。

14樓:mox丶玲

關於v的積分其實就是對f(v)=1,上限1下限-1的積分,正常積分就好了,然後得到結果是2,跟前面的1/2約掉

高數二重積分,高數二重積分 。。

聖克萊西亞 嚴格來說,並不是只有x對稱或y對稱才滿足積分為零的情況。由對稱性推導二重積分為零的原理,是出於以下的狀況 1 積分割槽域由於對稱性被分為相等的兩部分a1和a2,且存在一個一一對映,使得a1部分的任意一個面積微分ds1,在a2中存在唯一的面積微分ds2與之對應。2 對於相互對應的面積微分,...

利用二重積分定義求解二重積分的問題

零奕聲校香 利用對稱性。積分割槽域是關於座標軸對稱的。被積函式也時關於座標軸對稱的。在對稱區域內,奇函式的積分為0.常數的積分 常數倍的積分割槽域的面積。就利用這些吧。1 x立方siny dxdy dxdy x立方siny dxdy 前面1項的積分 面積,後面1項的積分 0 dxdy 積分割槽域的面...

二重積分積分割槽域的問題,關於二重積分積分割槽域對稱性問題

離人怎挽啦咔咔 d1區域是在x軸下方以 a,0 為圓心,a為半徑的半圓,d d1區域是x軸上方y 2ax,x 2a與x軸所圍成的區域。答案中是把這個區域分成兩塊分別計算。這種題目,你只需要要看他的x,y屬於哪到哪,然後不要管大於小於,全部都等於,寫出式子然後畫圖,思路就很清晰了。 怒過之後 關於x是...