1樓:東郭德刀婉
證明:由ab=
e,|a||b|=|e|=1≠0,必有|a|≠0,|b|≠0,根據定理方陣a,b可逆的充分必要條件是|a|≠0,|b|≠0,得a,b都可逆,又a-1
=a-1e
=a-1(a
b)=(a
-1a)b=e
b=b,說明
a的逆矩陣等於b
證畢!!!
2樓:之付友麥培
因為a,b是n階可逆矩陣,
且a,b滿足ab=a+b.
兩邊取行列式,
顯然有|a+b|=|ab|=|a||b|,所以①成立.
又ab=a+b,
移項,提公因子得ab-a=a(b-e)=b,a(b-e)=b-e+e,
(a-e)(b-e)=e.
故a-e,b-e都是可逆陣,
且互為逆矩陣,
從而知方程組(a-e)x=0只有零解,
所以③正確.④b-e不可逆是錯誤的,
又因(a-e)(b-e)=e,
故(b-e)(a-e)=e,
從而有ba-a-b+e=e,ba=a+b,得ab=ba,
從而有②(ab)-1=(ba)-1=a-1b-1成立.故①、②、③是正確的,
故選:c.
設a,b均為n階矩陣,且ab ba,證明1)如果a有n個
電燈劍客 1 ab ba等價於 p ap p bp p bp p ap 把p ap取成對角陣即可,接下去自己動手算 2 方法同上,取p1使得p1 ap1是對角陣,並且額外地把p1 ap1按特徵值排列成diag,然後用分塊乘法驗證p1 bp1也是分塊對角陣,再把每塊都對角化即可 第二問,s 1as c...
矩陣A,B都是n階矩陣,表示伴隨矩陣,求證(ABB
這個問題的證明與a,b是否可逆無關,因為證明方法裡不涉及到求逆陣的問題。我不知道你怎麼用可逆這個條件的。證明方法是這樣的 a aij nxn,b bij nxnc ab cij nxn cji ajk bki 求和是對k從1到n的d ab c dij nxn dij cji ajk bki a ai...
設ab均為n階矩陣下列關係一定成立的是
兔老大米奇 證明 因為a,b可逆,故a 1,b 1存在,ab可逆,且有a a a 1,b b b 1 故 ab ab ab 1 a b b 1a 1 b b 1 a a 1 b a ab都是n階矩陣,且ab 0,那麼取行列式得到 ab a b 0 所以顯然a和b的行列式中至少有一個為0,即矩陣a和矩...