求3階矩陣的逆矩陣,如何計算3階以內的矩陣求逆矩陣?

時間 2021-08-11 17:41:16

1樓:匿名使用者

ppt已傳送 按照ppt上面的相信你能夠解答出來的 加油!

2樓:匿名使用者

沒給具體題 給你個例子看看吧

求a的逆矩陣

a=3 -1 4

1 0 0

2 1 -5

方法: 構造分塊矩陣(a,e), 對它進行初等行變換,把左邊一塊化成單位矩陣時, 右邊一塊就是矩陣的逆.

原理: 一般教材中都會有

解: (a,e) =

3 -1 4 1 0 0

1 0 0 0 1 0

2 1 -5 0 0 1

r1-3r2,r3-2r2

0 -1 4 1 -3 0

1 0 0 0 1 0

0 1 -5 0 -2 1

r3+r1, r1*(-1),r3*(-1)0 1 -4 -1 3 0

1 0 0 0 1 0

0 0 1 -1 5 -1

r1+4r3

0 1 0 -5 23 -4

1 0 0 0 1 0

0 0 1 -1 5 -1

r1<->r2

1 0 0 0 1 0

0 1 0 -5 23 -4

0 0 1 -1 5 -1

所以 a^-1 =

0 1 0

-5 23 -4

-1 5 -1 .

滿意請採納^_^

如何計算3階以內的矩陣求逆矩陣?

3樓:楊必宇

求三階行列式的逆矩陣的方法:

假設三階矩陣a,用a的伴隨矩陣除以a的行列式,得到的結果就是a的逆矩陣。

具體求解過程如下:

對於三階矩陣a:

a11 a12 a13

a21 a22 a23

a31 a32 a33

行列式:|a|=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31;

伴隨矩陣:a*的各元素為:

a11 a12 a13

a21 a22 a23

a31 a32 a33

4樓:匿名使用者

如何快速寫出線性方程組通解以及三階矩陣的逆

給出一個3階矩陣,如何求出他的逆矩陣,求個例子

5樓:初識

求元素為具體數字的矩陣的逆矩陣,常用初等變換法.如果a可逆,則a可通過初等變換,化為單位矩陣e。

例如:擴充套件資料:

矩陣:在數學中,矩陣(matrix)是一個按照長方陣列排列的複數或實數集合 ,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。

將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。

對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考《矩陣理論》。在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。

數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個幾個世紀以來的課題,是一個不斷擴大的研究領域。 矩陣分解方法簡化了理論和實際的計算。 針對特定矩陣結構(如稀疏矩陣和近角矩陣)定製的演算法在有限元方法和其他計算中加快了計算。

無限矩陣發生在行星理論和原子理論中。

矩陣初等變換

矩陣的初等變換又分為矩陣的初等行變換和矩陣的初等列變換。矩陣的初等行變換和初等列變換統稱為初等變換。另外:分塊矩陣也可以定義初等變換。

所謂數域p上矩陣的初等行變換是指下列3種變換:

1)以p中一個非零的數乘矩陣的某一行

2)把矩陣的某一行的c倍加到另一行,這裡c是p中的任意一個數

3)互換矩陣中兩行的位置

同樣地,所謂數域p上矩陣的初等列變換是指下列3種變換:

1)以p中一個非零的數乘矩陣的某一列

2)把矩陣的某一列的c倍加到另一列,這裡c是p中的任意一個數

3)互換矩陣中兩列的位置

6樓:周桂花冷俏

例如求111

011101的逆矩陣

首先把原矩陣右邊接上單位矩陣

111100

011010

101001

然後進行轉化(為了把左邊的3列變為單位矩陣,我們要把第一行減去第二行得到新的第一行,第一行減去第三行得到新的第三行)

1001-10

011010

01010-1

再第二行減去第三行,再調整位置

1001-10

01010-1

001-111

此時新的右三列就是原矩陣的逆矩陣了。是逆矩陣的一般求法。

希望採納。

7樓:小樂笑了

一般用初等變換來求逆矩陣例如

8樓:匿名使用者

好好的做一個有用的,人讓人相信。

9樓:玉麒麟大魔王

給出一個三階矩陣,如何求出它的逆矩陣的?求個例子找一個數學老師吧。

10樓:ok波妹

編劇正的你具體的它的結算方式及其它的底面積乘以它的原值的高,然後乘以乘以它分層的一個啊角度就可以搭出它的立體具體的數值

11樓:匿名使用者

你可以諮詢一下專業人士,或者請教大神們

三階矩陣求逆公式 5

12樓:是你找到了我

求元索為具體數字的矩陣的逆矩陣,常用初等變換法『如果a可逆,則a』可通過初等變換,化為單位矩陣 i ,即存在初等矩陣使

可以看到當a通過初等變換化為單位處陣的同時,對單位矩陣i作同樣的初等變換,就化為a的逆矩陣

這就是求逆矩陣的初等行變換法,是實際應用中比較簡單的一種方法。需要注意的是,在作初等變換時只允許作行初等變換。同樣,只用列初等變換也可以求逆矩陣。

13樓:眉間雪

求三階行列式的逆矩陣的方法:

假設三階矩陣a,用a的伴隨矩陣除以a的行列式,得到的結果就是a的逆矩陣。

具體求解過程如下:

對於三階矩陣a:

a11 a12 a13

a21 a22 a23

a31 a32 a33

行列式:|a|=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31;

伴隨矩陣:a*的各元素為

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

a12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

a13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

a21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

…… a33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

所以得到a的伴隨矩陣:

a11/|a|    a12/|a|    a13/|a|

a21/|a|    a22/|a|    a23/|a|

a31/|a|    a32/|a|    a33/|a|

擴充套件資料

逆矩陣證明有以下:

1.逆矩陣是對方陣定義的,因此逆矩陣一定是方陣。

設b與c都為a的逆矩陣,則有b=c

2.假設b和c均是a的逆矩陣,b=bi=b(ac)=(ba)c=ic=c,因此某矩陣的任意兩個逆矩陣相等。

3.由逆矩陣的唯一性,a-1的逆矩陣可寫作(a-1)-1和a,因此相等。

4.矩陣a可逆,有aa-1=i 。(a-1) tat=(aa-1)t=it=i ,at(a-1)t=(a-1a)t=it=i

由可逆矩陣的定義可知,at可逆,其逆矩陣為(a-1)t。而(at)-1也是at的逆矩陣,由逆矩陣的唯一性,因此(at)-1=(a-1)t。

5.在ab=o兩端同時左乘a-1(ba=o同理可證),得a-1(ab)=a-1o=o

而b=ib=(aa-1)b=a-1(ab),故b=o

由ab=ac(ba=ca同理可證),ab-ac=a(b-c)=o,等式兩邊同左乘a-1,因a可逆aa-1=i 。

得b-c=o,即b=c。

14樓:青春愛的舞姿

姐姐記得求力的公式,他們三家聚的例行公事。

15樓:匿名使用者

a的逆矩陣=a*/|a|(ps:a*為伴隨矩陣)

設A為3階矩陣,且A的逆矩陣為(1 1 1,2 1 1,3 1 3),試求伴隨矩陣的逆矩陣

平面上兩點x,y的距離記為d x,y 由d sup,存在e中點列與,使d 1 n d x n y n d.e是有界閉集,故點列存在收斂子列,收斂於某點a e.設z k x n k w k y n k 則由n k k,d 1 k d 1 n k d x n k y n k d z k w k d.再由...

求解三階矩陣,三階矩陣求逆公式

求逆矩陣要耐心,一步一步來 一定要注意兩邊同時變換,這種題就是得多做熟能生巧,沒有什麼技巧,多練兩道耐下心來,我相信你一定可以的 求完逆矩陣,然後就是做矩陣的懲罰,這個也是沒有問題的但是我覺得這道題最好的方法還是按照解其次方程算,這樣比較快,而且不容易出錯 直接用初等變換的方法比先求逆矩陣再計算乘積...

二階矩陣乘以三階矩陣怎麼算,3 3階矩陣乘3 2階矩陣 怎麼算

答 很明顯的,你做錯了,或者其他什麼原因導致了這樣的結果,因為根據矩陣的乘法運算定義,必須是 只有當矩陣a的列數與矩陣b的行數相等時a b才有意義。一個m n的矩陣a m,n 左乘一個n p的矩陣b n,p 會得到一個m p的矩陣c m,p 二階矩陣乘以三階矩陣怎麼算 千里揮戈闖天涯 二階矩陣就是行...