1,2,2,4,3,8,4,16,5數列的通項公式為如下 an 11 nn 1 411n 12 n

時間 2021-08-30 10:38:46

1樓:匿名使用者

奇數項是1,2,3,4,5,.....即f(n)=[1/2-(-1)^n /2]*(n+1)/2

偶數項是2,4,8,16,......即g(n)=[1/2-(-1)^(n+1) /2]*2^(n/2)

兩者結合可寫成:an=[1/2-(-1)^n /2]*(n+1)/2+[1/2-(-1)^(n+1) /2]*2^(n/2)

式子 [1/2-(-1)^n /2] 的作用相當於一個開關,當n為奇數項時,它的值為1,當n為偶數時,它的值為0,這樣作為係數就可控制第一個數列的函式值間隔出現。

同樣,[1/2-(-1)^(n+1) /2]相當於第二個數列的開關,為奇數,值為0,為偶數,值為1,作為係數就可控制第二數列的函式值間隔出現。(式子中的n+1可以換成n-1,效果一樣)

以上式子最後化簡就是題中的式子了。

2樓:彳艮火蘭

歸納出來的

奇數項1,2,3,4,5

(n+1)/2

偶數項2,4,6,8,16

2^(n/2)

這兩步完全靠經驗了,不知道怎麼解釋,畢竟不是數學老師。

[1-(-1)^n]/2和[1-(-1)^(n-1)]/2是用來控制奇偶性的

奇數項時[1-(-1)^n]/2=1,[1-(-1)^(n-1)]/2=0,

偶數項時[1-(-1)^n]/2=0 ,[1-(-1)^(n-1)]/2-=1

an=[1-(-1)^n]/2 *奇數項通項公式+[1-(-1)^(n-1)]/2*偶數項通項公式

數列2,11 2通項公式數列3 16通項公式詳細解答這類題該怎麼解

解 2,1,1 2 寫成 2 1 2 2 2 3 2 4寫成分數形式就一目瞭然了,因此 an 2 n 解 應該是 3 2,9 4,25 8,65 16.3 2 1 1 2 9 4 2 1 4 25 8 3 1 8 65 16 4 1 16 因此 an n 1 2 n 這類題的基礎是觀察,熟記等差數列...

數列0,1,0, 1,0,1,0, 1,的通項公式是

滾打包收 其實我最近一直在研究這一類函式 這個通項公式還可以寫成是 其中,用到了函式f x round x 這個函式表示把一個數字舍入為最接近的整數。又因為函式f x round x x 1 2 高斯函式,不是中括號 所以說這個通項公式還可以寫成如下的式子 其實這個函式可以用三角函式或者分段函式來解...

數列 1,1, 2,2, 3,3的通項公式是

墨汁諾 可以這麼求,先求1,1,2,2,3,3,4,4.的通項公式 將這個數列乘以2得2,2,4,4,6,6,8,8因此原來的數列的通項是 1 n 1 2 n 1 2 1 1 n 數列各項值為1,3,5,7,9 各項絕對值構成一個以1為首項,以2為公差的等差數列 an 2n 1 又 數列的奇數項為正...