誰知道反三角函式的轉換公式,誰知道 三角函式與反三角函式的公式

時間 2021-08-30 09:25:20

1樓:心理學課件

反三角函式是一種基本初等函式,常見公式主要有:arcsin(-x)=-arcsinx、arccos(-x)=π-arccosx、arctan(-x)=-arctanx、arccot(-x)=π-arccotx等。

反三角函式公式有哪些

反三角函式常見公式

1、arcsin(-x)=-arcsinx

2、arccos(-x)=π-arccosx

3、arctan(-x)=-arctanx

4、arccot(-x)=π-arccotx

5、arcsinx+arccosx=π/2=arctanx+arccotx

6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

7、當x∈〔—π/2,π/2〕時,有arcsin(sinx)=x

8、當x∈〔0,π〕,arccos(cosx)=x

9、x∈(—π/2,π/2),arctan(tanx)=x

10、x∈(0,π),arccot(cotx)=x

11、x〉0,arctanx=arctan1/x,

12、若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

2樓:務遠祝煙

反三角函式公式:

arcsin(-x)=-arcsinx

arccos(-x)=∏-arccosx

arctan(-x)=-arctanx

arccot(-x)=∏-arccotx

arcsinx+arccosx=∏/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

當x∈〔—∏/2,∏/2〕時,有arcsin(sinx)=x

當x∈〔0,∏〕,arccos(cosx)=x

x∈(—∏/2,∏/2),arctan(tanx)=x

x∈(0,∏),arccot(cotx)=x

x〉0,arctanx=arctan1/x,arccotx類似

若(arctanx+arctany)∈(—∏/2,∏/2),則arctanx+arctany=arctan(x+y/1-xy)

同角三角函式的基本關係式

倒數關係:

商的關係:

平方關係:

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

誘導公式

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈z)

兩角和與差的三角函式公式

萬能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα

·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα

·tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半形的正弦、餘弦和正切公式

三角函式的降冪公式

二倍角的正弦、餘弦和正切公式

三倍角的正弦、餘弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函式的和差化積公式

三角函式的積化和差公式

α+βα-β

sinα+sinβ=2sin—--·cos—-—22

α+βα-β

sinα-sinβ=2cos—--·sin—-—22

α+βα-β

cosα+cosβ=2cos—--·cos—-—22

α+βα-β

cosα-cosβ=-2sin—--·sin—-—22

1sinα

·cosβ=-[sin(α+β)+sin(α-β)]21

cosα

·sinβ=-[sin(α+β)-sin(α-β)]21

cosα

·cosβ=-[cos(α+β)+cos(α-β)]21

sinα

·sinβ=-

-[cos(α+β)-cos(α-β)]2

誰知道 三角函式與反三角函式的公式

3樓:三翼熾天使

三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任何角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的。

其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。

三角函式看似很多、很複雜,但只要掌握了三角函式的本質及內部規律就會發現三角函式各個公式之間有強大的聯絡。而掌握三角函式的內部規律及本質也是學好三角函式的關鍵所在。

4樓:手機使用者

銳角三角函式公式

sin α=∠α的對邊 / 斜邊 cos α=∠α的鄰邊 / 斜邊 tan α=∠α的對邊 / ∠α的鄰邊 cot α=∠α的鄰邊 / ∠α的對邊

二倍角公式

sin2a=2sina•cosa cos2a=cos^2a-sin^2a=1-2sin^2a=2cos^2a-1 tan2a=(2tana)÷(1-tan^2a)

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]* =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

半形公式

tan(a/2)=(1-cosa)/sina=sina/(1+cosa); cot(a/2)=sina/(1-cosa)=(1+cosa)/sina. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb) tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

雙曲函式

sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函式值之間的關係:

sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:

利用公式-和公式三可以得到2π-α與α的三角函式值之間的關係: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈z) a·sin(ωt+θ)+ b·sin(ωt+φ) = √ • sin } √表示根號,包括中的內容

誘導公式

sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tana= sina/cosa tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 誘導公式記背訣竅:奇變偶不變,符號看象限

萬能公式

其它公式

(1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可 (4)對於任意非直角三角形,總有 tana+tanb+tanc=tanatanbtanc 證: a+b=π-c tan(a+b)=tan(π-c) (tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc) 整理可得 tana+tanb+tanc=tanatanbtanc 得證 同樣可以得證,當x+y+z=nπ(n∈z)時,該關係式也成立 由tana+tanb+tanc=tanatanbtanc可得出以下結論 (5)cotacotb+cotacotc+cotbcotc=1 (6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2) (7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc (8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc 其他非重點三角函式 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

反三角函式其他公式

arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 當x∈[—π/2,π/2]時,有arcsin(sinx)=x 當x∈[0,π],arccos(cosx)=x x∈(—π/2,π/2),arctan(tanx)=x x∈(0,π),arccot(cotx)=x x〉0,arctanx=π/2-arctan1/x,arccotx類似 若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

求三角函式和反三角函式常用公式

小陽同學 三角函式與反三角函式的關係公式 sin a b sinacosb cosasinbsin a b 反三角函式是一種基本初等函式。它是反正弦arcsinx,反餘弦arccosx,反正切arctanx,反餘切arccotx,反正割arcsecx,反餘割arccscx這些函式的統稱,各自表示其反...

三角函式公式,三角函式公式大全

兩角和與差的三角函式 cos cos cos sin sin cos cos cos sin sin sin sin cos cos sin tan tan tan 1 tan tan tan tan tan 1 tan tan 和差化積公式 sin sin 2sin 2 cos 2 sin sin...

三角函式公式,三角函式公式大全

一 誘導公式 口訣 分子 奇變偶不變,符號看象限。1.sin k 360 sin cos k 360 cos a tan k 360 tan 2.sin 180 sin cos 180 cosa 3.sin sina cos a cos 4 tan 180 tan tan tan 5.sin 180...