1樓:仨x不等於四
特徵向量和特徵值的定義就是:矩陣a乘以一個非零向量a,相當於一個數λ乘以這個向量a,於是這個數λ就是特徵值(能代表矩陣a特點的數值),向量a就是特徵向量。寫成式子就是
aa=λa
那你想想,移項過去以後aa-λa=0,要把a用乘法分配律提出來,就變成(a-λe)a=0(e是單位矩陣)
那你現在的目的是要求λ和a,如果運用條件呢?首先這是個以a為未知數的齊次方程組(右邊是0),a≠0,根據解的判別定理,齊次方程組有一個不為0的解,比如它的係數行列式為0才行,所以
|a-λe|=0,就是你問的第一個式子。
然後就算這個行列式的值來解出λ。行列式的結果是一個關於λ的3次方程,3次方程必然有3個解(這是代數基本定理),如果出現平方項,就看成兩個一樣的解,或者把這個特徵值稱為“二重的”(代數重數為2)。
我上面說的這些教材上肯定會寫,樓主再去複習一下。有什麼不懂的可以追問。
2樓:匿名使用者
裡面就是矩陣的加減
a是一個矩陣,γe的單位矩陣的γ倍,當然就是這個結果了
特徵值就是這麼求的,以便滿足 ak=γk
3樓:匿名使用者
在已知方陣的情況下,先求特徵值,再求對應的特徵向量,這是沒錯的
線性代數中怎樣求特徵值和特徵向量?
4樓:曾經的一隻豬
特徵值與特徵向量是線性代數的核心也是難點,在機器學習演算法中應用十分廣泛。要求線性代數中的特徵值和特徵向量,就要先弄清楚定義:
設 a 是 n 階矩陣,如果存在一個數 λ 及非零的 n 維列向量 α ,使得aα=λαaα=λα成立,則稱 λ 是矩陣 a 的一個特徵值,稱非零向量 α 是矩陣 a 屬於特徵值 λ 的一個特徵向量。
觀察這個定義可以發現,特徵值是一個數,特徵向量是一個列向量,一個矩陣乘以一個向量就等於一個數乘以一個向量。
線性代數,求特徵值和特徵向量
5樓:dear豆小姐
||特徵值 λ = -2, 3, 3,特徵向量
: (1 0 -1)^t、(3 0 2)^t。
解:|λe-a| =
|λ-1 -1 -3|
| 0 λ-3 0|
|-2 -2 λ|
|λe-a| = (λ-3)*
|λ-1 -3|
|-2 λ|
|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2
特徵值 λ = -2, 3, 3
對於 λ = -2, λe-a =
[-3 -1 -3]
[ 0 -5 0]
[-2 -2 -2]
行初等變換為
[ 1 1 1]
[ 0 1 0]
[ 0 2 0]
行初等變換為
[ 1 0 1]
[ 0 1 0]
[ 0 0 0]
得特徵向量 (1 0 -1)^t。
對於重特徵值 λ = 3, λe-a =
[ 2 -1 -3]
[ 0 0 0]
[-2 -2 3]
行初等變換為
[ 2 -1 -3]
[ 0 -3 0]
[ 0 0 0]
行初等變換為
[ 2 0 -3]
[ 0 1 0]
[ 0 0 0]
得特徵向量 (3 0 2)^t。
答:特徵值 λ = -2, 3, 3,特徵向量: (1 0 -1)^t、(3 0 2)^t。
擴充套件資料
特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用
設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。
非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量,簡稱a的特徵向量或a的本徵向量。
矩陣的特徵向量是矩陣理論上的重要概念之一,它有著廣泛的應用。數學上,線性變換的特徵向量(本徵向量)是一個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。
6樓:匿名使用者
|a-λ
e| =
1-λ 2 3
2 1-λ 3
3 3 6-λ
r1-r2
-1-λ 1+λ 0
2 1-λ 3
3 3 6-λ
c2+c1
-1-λ 0 0
2 3-λ 3
3 6 6-λ
= (-1-λ)[(3-λ)(6-λ)-18]= (-1-λ)[λ^2-9λ]
= λ(9-λ)(1+λ)
所以a的特徵值為 0, 9, -1
ax = 0 的基礎解係為: a1 = (1,1,-1)'
所以,a的屬於特徵值0的全部特徵向量為: c1(1,1,-1)', c1為非零常數.
(a-9e)x = 0 的基礎解係為: a2 = (1,1,2)'
所以,a的屬於特徵值9的全部特徵向量為: c2(1,1,2)', c2為非零常數.
(a+e)x = 0 的基礎解係為: a3 = (1,-1,0)'
所以,a的屬於特徵值-1的全部特徵向量為: c3(1,-1,0)', c3為非零常數.
7樓:匿名使用者
你好,滿意請採納哦!
|a-λe|=
2-λ 3 2
1 8-λ 2
-2 -14 -3-λ
= -(λ-1)(λ-3)^2=0
解得特徵值為1,3,3
1對應的特徵向量:
(a-e)x=0
係數矩陣:
1 3 2
1 7 2
-2 -14 -4
初等行變換結果是:
1 0 2
0 1 0
0 0 0
所以特徵向量是[-2 0 1]^t
3對應的特徵向量:
(a-3e)x=0
係數矩陣:
-1 3 2
1 5 2
-2 -14 -6
初等行變換結果是:
1 1 0
0 2 1
0 0 0
所以特徵向量是[1 -1 2]^t
8樓:
一個基本結論:
矩陣所有特徵值的和為主對角線上元素的和。
所以,兩個特徵值之和為
1+3=4
9樓:匿名使用者
λ||λ|λe-a| =
|λ-1 -1 -3|| 0 λ-3 0||-2 -2 λ||λe-a| = (λ-3)*
|λ-1 -3|
|-2 λ|
|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2
特徵值 λ = -2, 3, 3
對於 λ = -2, λe-a =
[-3 -1 -3]
[ 0 -5 0]
[-2 -2 -2]
行初等變換為
[ 1 1 1][ 0 1 0][ 0 2 0]行初等變換為
[ 1 0 1][ 0 1 0][ 0 0 0]得特徵向量 (1 0 -1)^t對於重特徵值 λ = 3, λe-a =
[ 2 -1 -3]
[ 0 0 0]
[-2 -2 3]
行初等變換為
[ 2 -1 -3]
[ 0 -3 0]
[ 0 0 0]
行初等變換為
[ 2 0 -3]
[ 0 1 0]
[ 0 0 0]
得特徵向量 (3 0 2)^t.
10樓:豆賢靜
題目給的條件是a的秩為2,所以在特徵值為-2的時候,最多隻有兩個特徵向量。
11樓:小樂笑了
|λi-a| =
λ-1 -1 -3
0 λ-3 0
-2 -2 λ
= (λ-1)(λ-3)λ-2×3×(λ-3) = (λ-3)(λ+2)(λ-3) = 0
解得λ=-2,3(兩重)
12樓:匿名使用者
求 λ-2 2 0
2 λ-1 2
0 2 λ
行列式值為0的解。
得特徵值為 -2,1,4。
對λ^3-3λ^2-6λ+8進行因式分解。
一般求特徵值時的因式分解步驟都不難, 上式容易看出1是它的一個零點,提取出λ-1,得到
λ^3-3λ^2-6λ+8=(λ-1)(λ^2-2λ-8)
13樓:匿名使用者
一個線性方程組的基礎解系是這樣的一個解向量組:
14樓:徐臨祥
1.首先讓我們來了解一下特徵值和特徵向量的定義,如下:
2.特徵子空間基本定義,如下:
3.特徵多項式的定義,如下:
15樓:蒯懿靖迎夏
此題中,由於是實對稱矩陣,特徵向量互相垂直,所以η·η1=0,所以
x2+x3=0。在滿足該條件的基礎上任取互相垂直的向量選作η2、η3(只要滿足該條件,就屬於
λ=1對應特徵向量的解空間),即可。
對矩陣a,方程
ax=λx(x待求向量,λ待求標量),的解x稱為a的特徵向量,
λ為對應的特徵值,特徵值特徵向量問題是線性代數學習、研究的一個重要模組。
一般求解辦法:
第一步,求解方程:det(a-λe)=0
得特徵值
λ第二步,求解方程:(a-λe)x=0
得對應特徵向量
x特徵值特徵向量問題的應用比較廣泛:
線性代數領域——化簡矩陣(即矩陣對角化、二次型標準化等),計算矩陣級數
高等數學領域——解線性常係數微分方程組、判斷非線性微分方程組在奇點處的穩定性
物理——矩陣量子力學
……以上僅僅是筆者接觸到的一些應用。
16樓:洛德業劇溫
線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。
由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。
數學上,線性變換的特徵向量(本徵向量)是一個非退化的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。一個線性變換通常可以由其特徵值和特徵向量完全描述。
特徵空間是相同特徵值的特徵向量的集合。
設a為n階矩陣,根據關係式ax=λx,可寫出(λe-a)x=0,繼而寫出特徵多項式|λe-a|=0,可求出矩陣a有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λie-a)x=0,所求解向量x就是對應的特徵值λi的特徵向量。
線性代數中求相同特徵值對應不同的特徵向量的求法,是不是不一定
你好!首先,r s n r a r s 是基礎解系的秩,n是未知數的個數,r a 是化為最簡型增廣矩陣的秩,於是你截圖的那個方程的基礎解系的向量個數r s 3 1 2,所以有兩個基礎解系,的是其中一種,你寫的又是一種,只要這兩個向量線性無關,都可以作為基礎解系的一組解,於是特徵向量的通解或者說全體解...
線性代數概念 關於矩陣的特徵值,矩陣特徵值 線性代數
1.首先n階矩陣a的特徵可能不止一個,如果有一個是0,那麼a e e是n階單位矩陣 的特徵值就不會是零這句話是不對的。因為a的特徵值可能還有個1,就會導致a e 特徵值包含0。就跟簡單減法一樣 2.a 3 0 那麼a 3 e e,a e a 2 ae e e,所以 a e 是可逆的,逆矩陣為 a 2...
線性代數,求特徵值,題很簡單,但是入E A和使用A 入E的兩種方法,得到多項式居然不同
風清響 e a 和 a e 相等麼?不一定。a是偶數階才相等。但是他們只差一個負號。所以當令其為0的時候,求出來的 一定是一樣的。這邊求出來,都是 3 3 2 5 0 負號兩邊可以消掉 化成這個方程求特徵值應該這樣做。首先第一步是猜一個根,你放心,肯定能猜出來,0,1,1,最多 2,2,肯定有一個是...