1樓:匿名使用者
lim(x→0+)[(x^x-1)/xlnx]=lim(x→0+)[(e^(xlnx)-1)/xlnx]=lim(x→0+)[xlnx/xlnx]=1e^x-1和x是等價無窮小
2樓:我才是無名小將
lim(x→0+)(xlnx)
=lim(x→0+)(lnx/(1/x))=lim(x→0+)((1/x)/(-1/x^2))=lim(x→0+)(-x)
=0可令t=xlnx,
lim(x→0+)[(x^x-1)/xlnx]=lim(x→0+)[(e^(xlnx)-1)/xlnx]=lim(x→0+)[(x^x-1)/xlnx]=lim(x→0+)[(e^(xlnx)-1)/xlnx]=lim(t→0+)[(e^t-1)/t)=lim(t→0+)e^t)=1
3樓:匿名使用者
令t=xlnx,
lim(x→0+)[(x^x-1)/xlnx]=lim(x→0+)[(e^(xlnx)-1)/xlnx]=lim(x→0+)[(x^x-1)/xlnx]=lim(x→0+)[(e^(xlnx)-1)/xlnx]=lim(t→0+)[(e^t-1)/t)=lim(t→0+)e^t)=1
xlnx的極限 x趨向0 要步驟哦
4樓:匿名使用者
當x→0時,xlnx的極限時0
解題過程:
原式等於lnx除以1/x,分子分母都是無窮,用洛必達法則法則,求導得到結果是-x,x趨於0,那麼-x=0,故極限就是0。
洛必達法則要注意必須分子與分母都是0或者都是∞時才可以使用,否則會導致錯誤;如果洛必達法則使用後得到的極限是不存在的(振盪型的),不代表原極限就不存在,如lim(x→∞)sin x/x就不可以。
求函式極限的方法有:
1、泰勒公式
(含有e^x的時候,尤其是含有正餘旋的加減的時候要特變注意!)e^x,sinx,cos,ln(1+x)對題目簡化有很好幫助。
2、面對無窮大比上無窮大形式的解決辦法。
取大頭原則最大項除分子分母,看上去複雜處理很簡單。
3、無窮小與有界函式的處理辦法
面對複雜函式時候,尤其是正餘弦的複雜函式與其他函式相乘的時候,一定要注意這個方法。面對非常複雜的函式可能只需要知道它的範圍結果就出來了!
4、夾逼定理
(主要對付的是數列極限)這個主要是看見極限中的函式是方程相除的形式,放縮和擴大。
5、等比等差數列公式應用
對付數列極限,q絕對值符號要小於1。
6、各項的拆分相加
(來消掉中間的大多數。) 對付的還是數列極限可以使用待定係數法來拆分化簡函式。
5樓:匿名使用者
答案是零。
原式等於lnx除以1/x,分子分母都是無窮,用l,hospital法則,求導得到結果是-x,x趨於0,那麼-x=0,極限就是0
6樓:墨軒
lnx比x分之一,用洛必達法則求導。成1/x比負的x平方分之一。上下一約,成負的x.所以x趨於0為0
7樓:匿名使用者
x趨向0 xlnx的極限=lim-x/x=-1
求當x→0時xlnx的極限,需要過程
8樓:匿名使用者
當x→0時,xlnx的極限時0
分析:當x→0時,lnx→-∞,所以該極限是0×∞型的極限,可以經過變形,利用洛必達法則求極限。
解:原式=lim[lnx/(1/x)]
=lim[(1/x)/(-1/x²)]……【利用洛必達法則】=lim[-x]
=0洛必達法則簡介如下:
9樓:江東子弟
這是一題0×∞的題目,一般思路是化為0比0型或者∞比∞型,再使用洛必達法則。
此題可以先化成lnx/(1/x),也可化成x/(1/(lnx))。出於求導的方便,我們使用前者。
lnx/(1/x)的分子分母分別求導,分子求導為1/x,分母求導為-1/x²,求導之後合在一起為(1/x)/(-1/x²)=-x
因此可以得出,此題極限為0
10樓:省略是金
用泰勒公式去分解是核心。xlnx無窮乘以0,因為lnx的泰勒公式只針對x趨於1不適用想到洛必達
化成無窮比無窮形式
lnx/(1/x)上下同時取導,(1/x)/(-1/x²)再取極限於是得洛必達為0
將x變為x-1 x趨於1
11樓:超級死神剋星
求函式極限的方法有:
(1)代入求值法
要注意非0數/0=∞
而對於0/0、∞/∞、0*∞、∞-∞、0^0、∞^0、1^∞、log0(0)、log+∞(+∞)、log1(1)型的不定式要用以下方法去求解:
(2)約零因子法
(3)分子分母同除以最大項
(4)分子分母有理化
(5)無窮小乘以有界量等於無窮小
(6)等價無窮小,泰勒公式(等價無窮小就出自於泰勒公式)
在使用泰勒公式替代時,如果分子或分母是幾個單獨的函式的乘積時,各自只需替換到最低階的泰勒公式;而如果分子是幾個單獨的函式相加減時,先確定分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數,而分子中的每個單獨的函式的泰勒公式的替代要使得x的最高次數與分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數相一致,才能使替代準確無誤。
(7)兩個分式相減的情形要通分
(8)洛必達法則
洛必達法則要注意必須分子與分母都是0或者都是∞時才可以使用,否則會導致錯誤;如果洛必達法則使用後得到的極限是不存在的(振盪型的),不代表原極限就不存在,如lim(x→∞)sin x/x就是這個例子。
(9)換底公式、冪指型公式(x^y=e^(y*ln x))、三角公式、雙曲三角函式公式等等。
而這一題:可將xln x變形為ln x/(1/x),再用洛必達法則,得到-x,當x趨於0時,答案就是0。
limx趨近無窮x x 2x 1 3x x 1的極限怎麼求
曉龍老師 結果為 1 3 解題過程 解 limx趨近無窮x x 2x 1 3x x 1 limx趨近無窮1 1 x 2 x 1 x 3 1 x 1 x lim x x 3 x 2 2x 1 3x 3 x 1 lim x 1 1 x 2 x 2 1 x 3 3 1 x 2 1 x 3 1 0 0 0 ...
xIn 1 x ,x趨於0時的極限
pasirris白沙 1 本題雖然是無窮小除以無窮小型不定式,解法有很多種 a 運用關於 e 的重要極限 b 羅畢達求導法則 c 等價無窮小代換 d 麥克勞林級數。a是最佳方法,對極限的理解 悟性的提高,最有幫助 b是國際認可的最快捷的解題方法,但對悟性沒有幫助 c是國內盛行的方法,是我們閉門自樂的...
如圖,求極限lim x趨於0根號下1 tanx
創作者慶帥 這是高等數學中,關於求極限的問題。當x 0時 tanx 0 sinx 0 lim x 0 1 1 1 1 1 2 數學解題方法和技巧。中小學數學,還包括奧數,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?希望大家能慣用這些思維和方法來解題!形象思維方...