用數學歸納法證明的步驟,用數學歸納法證明

時間 2021-09-13 14:41:14

1樓:匿名使用者

基本步驟

(一)第一數學歸納法:

一般地,證明一個與自然數n有關的命題p(n),有如下步驟:

(1)證明當n取第一個值n0時命題成立。n0對於一般數列取值為0或1,但也有特殊情況;

(2)假設當n=k(k≥n0,k為自然數)時命題成立,證明當n=k+1時命題也成立。

綜合(1)(2),對一切自然數n(≥n0),命題p(n)都成立。

(二)第二數學歸納法:

對於某個與自然數有關的命題p(n),

(1)驗證n=n0時p(n)成立;

(2)假設n0≤n<=k時p(n)成立,並在此基礎上,推出p(k+1)成立。

綜合(1)(2),對一切自然數n(≥n0),命題p(n)都成立。

(三)倒推歸納法(反向歸納法):

(1)驗證對於無窮多個自然數n命題p(n)成立(無窮多個自然數可以是一個無窮數列中的數,如對於算術幾何不等式的證明,可以是2^k,k≥1);

(2)假設p(k+1)(k≥n0)成立,並在此基礎上,推出p(k)成立,

綜合(1)(2),對一切自然數n(≥n0),命題p(n)都成立;

(四)螺旋式歸納法

對兩個與自然數有關的命題p(n),q(n),

(1)驗證n=n0時p(n)成立;

(2)假設p(k)(k>n0)成立,能推出q(k)成立,假設 q(k)成立,能推出 p(k+1)成立;

綜合(1)(2),對一切自然數n(≥n0),p(n),q(n)都成立。

2樓:匿名使用者

1. 第一數學歸納法

設p(n)是關於自然數n的命題,若

1)(奠基) p(n)在n=1時成立;

2)(歸納) 在p(k)(k為任意自然數)成立的假設下可以推出p(k+1)成立,則p(n)對一切自然數n都成立。

推論1 奠基為n=j ,歸納出p(n)對n≥j的成立情況。

推論2 奠基為n=1,2,……m,由p(k)成立推出p(k+m)成立,歸納出對於所有自然數成立的情況。

2. 第二數學歸納法

奠基 p(n)在n=1時成立;

歸納 在p(n)(1≤n≤k,k為任意自然數)成立的假定成立下可以推出p(k+1)成立,則p(n)對於一切自然數成立。

3. 反向歸納法

設p(n)是關於自然數n的命題,若

1)p(n)對無限多個自然數n成立;

2)在p(k)(k是大於1的自然數)成立的假設下可以推出p(k-1)成立,則p(n)對一切自然數都成立。

用數學歸納法證明

3樓:安

詳見解析

試題分析:由數學歸納法證明不等式的一般步驟可內知:第一步應驗容證初值

用數學歸納法證明,用數學歸納法證明的步驟

假設 1 2 3 2n n 2n 1 n 1時,1 2 2 1明顯相等 n k 1時,1 2 3 2k 2k 1 2k 2 k 1 2k 3 1 2 3 2k k 2k 1 4k 3 4k 3 此時也成立 由數學歸納法可得 假設成立 因為左邊2n並不是前面各項的通項公式,根據前幾項的規律可知該數列為...

用數學歸納法證明的步驟 數學歸納法進行證明的步驟

基本步驟。一 第一數學歸納法 一般地,證明一個與自然數n有關的命題p n 有如下步驟 1 證明當n取第一個值n0時命題成立。n0對於一般數列取值為0或1,但也有特殊情況 2 假設當n k k n0,k為自然數 時命題成立,證明當n k 1時命題也成立。綜合 1 2 對一切自然數n n0 命題p n ...

用數學歸納法證明 1 ,用數學歸納法證明 1 1 2 1 3 1 4 1 2n 1 1 2n 1 n 1 1 n 2 1 n

n 1時,左 1 1 2 1 2 右面 1 2成立,假設n k時,成立 1 1 2 1 3 1 4 1 2k 1 1 2k 1 k 1 1 k 2 1 k k 則n k 1時,右 1 k 2 1 k 3 1 k 1 k 1 2k 2 1 k 2 1 k 3 1 2k 1 1 2k 2 1 左 1 1...