1樓:介長征樸醜
如需要構造一個f'(x)不在的函式
令a=0,f(x)定義如下
f(x)=sin(2nπx)/n
x∈(n-1,n]
其中n=1,2,3....
當這個函式是趨於0的,這是因為,
在第個區間(n-1,n]的最大最小值分別為-1/n,1/n.
而這個函式是可導的
f'(x)=
2πcos(2nπx)
x∈(n-1,n]
(在x=n處,可以用左右導數來驗證可導)
f'(x)在無窮處極限不會為0
因為f'(n)=2π
是一個常數列
所以存在一個子列不為趨於0.
所以f'(x)極限不為0.
2樓:季清竹戈燕
必要性:因為limf(x)=a【x趨於無窮】,所以任給正數ε,存在正數m,當│x│>m時,有│f(x)-a│<ε.
即當x>m時,有│f(x)-a│<ε,當x<-m時,也有│f(x)-a│<ε。所以limf(x)=limf(x)=a【x分別趨於正無窮與負無窮】
充分性:因為limf(x)=limf(x)=a【x分別趨於正無窮與負無窮】,所以對任意正數ε,存在正數m1,當x>m1時,有│f(x)-a│<ε;同樣存在正數m2,當x<-m2,時,也有│f(x)-a│<ε。取m=max,則當│x│>m時,有│f(x)-a│<ε。
故limf(x)=a【x趨於無窮大】
f(x)在(a,+∞)上可導,且x趨於正無窮時(f(x)+f'(x))趨於0。
3樓:善言而不辯
f(x)在(a,+∞)上可copy
導,在[x,x+1]上,
bai用拉格朗日中du值定理
f(x+1) - f(x) = f '(ξ) * (x+1-x) x < ξ +∞zhi) [f(x+1) - f(x) ]
= lim(x->+∞) f '(ξ) =lim(ξ->+∞) f '(ξ)
∴daolim(x->+∞) f '(x) = 0∵lim(x->+∞)[f(x)+f'(x)]=lim(x->+∞)[f(x)]+lim(x->+∞)[f'(x)]=0
∴lim(x->+∞) f (x) = 0
如果函式f(x)在(a,+∞)內可導, 且limf(x)存在,證明:limf'(x)=0
4樓:匿名使用者
在du[x,x+1]上,用拉格朗zhi日中dao值定理 f(x+1) - f(x) = f '(ξ回) * 1 x < ξ +∞
答) [f(x+1) - f(x) ]
= lim(x->+∞) f '(ξ) = lim(ξ->+∞) f '(ξ)
lim(x->+∞) f '(x) = 0
f(x)在(0,+∞)上有界且可導 當x趨於無窮時f(x)趨於0,那麼f(x)的導數一定趨於0
5樓:131貓咪
對函式割線的斜率,任取δx>0,在x處:
k(x)=(f(x+δx)-f(x))/δx;
f(x)→0(x→+∞),則(不知道極限的ε-δ表述你會不會):
任取ε>0,存在m∈r,使得當x>m時,
|f(x)|<ε,
|k|<2ε/δx;
而由於取ε時,已取δx,則可令ε=(δx)^2,故 |k|<2δx;
令δx→0,k→f'(x),k→0。
當然,這前提是f(x)在(0,+∞)上有界且可導,即連續;
若其不連續則沒有δx→0,k→f'(x)。
比如你可以在x-y系內構造出如下函式:(如附圖)(1)畫出y=1/x 和y=-1/x (x>0);
(2)在兩條線之間一些畫出平行斜線。
這些斜線組成的函式就滿足x趨於無窮時f(x)趨於0,f(x)的導數不趨於0。
設f(x)在(a,+∞)內可導,且limf(x)=a>0(當x-->+∞),證明limf(x)=+∞(當x-->+∞)
6樓:匿名使用者
題目條來件應該是limf'(x)=a>0
則由極自限的保號性可bai知存在
dux, 當x>=x時, f'(x)>a/2所以zhi當x>x時, 由拉格朗日中值定理dao存在c∈(x,x)使得f(x)-f(x)=f'(c)(x-x)>a/2 × (x-x) (這裡c>x所以f(c)>a/2)
所以f(x)>f(x)+a(x-x)/2->+∞ (當x->+∞)
7樓:匿名使用者
f'(x)-a/2趨向於a/2>0,由保號性抄,存在
設函式f x 在x 0處可導,討論函式f x 在x 0處
宋愛景介環 解 1 f x x x 0 x x 0易求的f x 在x 0的左導數為 1,右導數為1左右導數不相等,故在x 0處不可導 2 limx 0 f x 0 1 1 f 0 0limx 0 f x 0 1 1 f 0 0 f x 在x 0,既不左連續,也不右連續 x 0為f x 的間斷點 紀誠...
設函式f x 在R上可導,且對任意x R有f xk1。證明存在c R,使得f c c
如果f 0 0,則結論自然成立 所以不妨設f 0 0 否則以 f代f 因為f x a 1 所以在 0,x 上積分可得 x 0 f x f 0 ax 1 反證法 如果f c c在c 0時恆不成立,則有f x x 因為f 0 0 結合 1 式有x f 0 0 所以 1 f 0 x0時恆成立,因為只需令x...
設函式f x 在x 0處可導,且f 0 0,求極限
要先分離變數,再求導。0,x t n 1 f x n t n dt 1 n 0,x f x n t n dt n 1 n 0,x f x n t n d x n t n 1 n x n,0 f s ds 1 n 0,x n f s ds 然後分子分母都趨於0,用洛必達法則分子分母分別求導。分子求導 ...