關於線性代數二次型的規範形的表達?

時間 2023-01-25 09:45:08

1樓:萌萌司徒夢

1、是的,一般是先化為標準型;

如果題目不指明用什麼變換, 一般情況配方法比較簡單;

若題目指明用正交變換, 就只能通過特徵值特徵向量了;

2、已知標準形後, 平方項的係數的正負個數即正負慣性指數;

配方法得到的標準形, 係數不一定是特徵值。

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1;

所以規範型中平方項的係數為 1,1,-1 (兩正一負)。

3、有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。

擴充套件資料:線性代數是代數學的一個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。

例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。

含有n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。線性關係問題簡稱線性問題。解線性方程組的問題是最簡單的線性問題。

2樓:匿名使用者

題給的二次型可以寫成f(x1,x2,x3)=(x1+x2+x3)^2,因此答案為c

線性代數,這個二次型能化為規範型嗎?怎麼化?

3樓:angela韓雪倩

任何二次型都可以化成規範型。

只需要在標準型的基礎上。

再做非奇異變換。

將平方項的係數變為1或-1就可以了。

方法如下:這題的變化如下:

擴充套件資料:

線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。

線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

線性(linear)指量與量之間按比例、成直線的關係,在數學上可以理解為一階導數為常數的函式。

非線性(non-linear)則指不按比例、不成直線的關係,一階導數不為常數。

線性代數起源於對二維和三維直角座標系的研究。在這裡,一個向量是一個有方向的線段,由長度和方向同時表示。這樣向量可以用來表示物理量,比如力,也可以和標量做加法和乘法。

這就是實數向量空間的第一個例子。

·每一個線性空間都有一個基。

·對一個 n 行 n 列的非零矩陣 a,如果存在一個矩陣 b 使 ab = ba =e(e是單位矩陣),則 a 為非奇異矩陣(或稱可逆矩陣),b為a的逆陣。

·矩陣非奇異(可逆)當且僅當它的行列式不為零。

·矩陣非奇異當且僅當它代表的線性變換是個自同構。

·矩陣半正定當且僅當它的每個特徵值大於或等於零。

·矩陣正定當且僅當它的每個特徵值都大於零。

·解線性方程組的克拉默法則。

·判斷線性方程組有無非零實根的增廣矩陣和係數矩陣的關係。

4樓:匿名使用者

1. 是的, 一般是先化為標準型。

如果題目不指明用什麼變換, 一般情況配方法比較簡單若題目指明用正交變換, 就只能通過特徵值特徵向量了2. 已知標準形後, 平方項的係數的正負個數即正負慣性指數配方法得到的標準形, 係數不一定是特徵值。

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1

所以規範型中平方項的係數為 1,1,-1 (兩正一負)

線性代數二次型規範形問題 5

5樓:任曼皖

不用這麼麻煩,就一個填空題,合同矩陣必等秩,切正負慣性指數相同,所以你只要求出b的特徵值就知道了。

線性代數(二次型化為規範型問題)如何解決?

6樓:墨汁諾

1、是的,一般是先化為標準型;

如果題目不指明用什麼變換, 一般情況配方法比較簡單;

若題目指明用正交變換, 就只能通過特徵值特徵向量了;

2、已知標準形後, 平方項的係數的正負個數即正負慣性指數;

配方法得到的標準形, 係數不一定是特徵值。

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1;

所以規範型中平方項的係數為 1,1,-1 (兩正一負)。

3、有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。

7樓:匿名使用者

線性代數二次型化元素規劃如何解決這是數學問題找一數學老師幫你剪。

線性代數里的二次型的規範形中 實對稱矩陣的分類 是怎麼分的

8樓:騎秀逸閉豔

秩相等的同階矩陣不一定合同,只有正慣性指數相等才合同,所以秩為r的矩陣在合同意義下分為正慣性指數為0,1,..r共。

r+1類,而n階矩陣的秩可以是0~n,所以有那個和。

至於前面那個充分必要條件一般的課本上都會有的,請你自己查閱。

線性代數二次型的規範型怎麼理解? 圖裡的為什麼只要正負號相對應就行了?

9樓:匿名使用者

正交變換是合同變換。

二次型的正負慣性指數在合同變換下不變。

即規範形的正負1的個數是唯一確定的。

線性代數(二次型化為規範型問題)

10樓:匿名使用者

1. 是的, 一般是先化為標準型。

如果題目不指明用什麼變換, 一般情況配方法比較簡單若題目指明用正交變換, 就只能通過特徵值特徵向量了2. 已知標準形後, 平方項的係數的正負個數即正負慣性指數配方法得到的標準形, 係數不一定是特徵值。

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1

所以規範型中平方項的係數為 1,1,-1 (兩正一負)

11樓:

有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。

由標準形知道正、負特徵值的個數,即可直接寫出規範形,至於標準形是用可逆的線性變換還是正交變換得到的,對特徵值的正負有影響嗎?

這個二次型的矩陣是對角矩陣,特徵值為-2,3,4,兩正一負,所以規範形即得。

12樓:匿名使用者

問題1,二次型可以直接化為規範型。問題2.因為正負慣性指數是由標準型各項的係數決定的,所以一目瞭然。

是根據特徵值確定的,因為從二次型到標準型用代數的方法做,得到的標準型的各項係數就是特徵值。因為標準型的係數都是合同的,所以是···

如何由矩陣求二次型的規範性,線性代數,這個二次型能化為規範型嗎?怎麼化?

在大鐘寺看雜技的櫻花 1 是的,一般是先化為標準型 如果題目不指明用什麼變換,一般情況配方法比較簡單 若題目指明用正交變換,就只能通過特徵值特徵向量了 2 已知標準形後,平方項的係數的正負個數即正負慣性指數 通過匹配法得到的標準形式,其係數不一定是特徵值。例中,平方項的係數為 2,3,4,兩個正的,...

線性代數矩陣的標準型

1.首先求出特徵值。det e a 0,求出 應該可以求出三個不同的特徵值。2.矩陣的標準型,是矩陣的相似對角矩陣,即將每個特徵值放在矩陣的主對角線上即可。 我也是剛學的線性代數 我是大1新生,老師早上剛講 我順便複習下 哈 首先 矩陣的基本3個運算你應該知道 我就不多說了 跟n元1次方程一樣的 第...

線性代數中行等價的問題,線性代數中關於行等價的問題

對矩陣a作行初等變換,相當於使a左乘1個非奇異矩陣p.b pa.記b的行向量分別為b 1 b 2 b n a的行向量分別為a 1 a 2 a n p的列向量分別為p 1 p 2 p n p p 1 p 2 p n p i,j i,j 1,2,n.則,b b 1 b 2 b n pa p a 1 a ...