高一數學題目,高一數學練習題

時間 2022-03-14 01:45:23

1樓:匿名使用者

1. 根據b平方-4ac

2.條件不充足,只能分類討論,對稱軸大於0,a大於0,在-2上有對稱軸小於0 a小魚0 在2上有

3.讓x2-x1大於x4-x3 運用葦達定理還要滿足對稱軸在x4- x1+x2/2 到x3+ x1+x2/2 之間

2樓:匿名使用者

(1) 因為f(x)有2個實根,即

⊿=4b2-8a≥0

即b2≥2a

a/b2≤1/2

而f(1/b)=a/b2+2b/b+2=a/b2+4≤1/2+4=9/2

(2)f(x)的對稱軸x=-b/a

a>0,拋物線的影象開口向上,且-b/a<0,即b>0,則x=2,最大值y(max)=4a+4b+2

a>0,拋物線的影象開口向上,且-b/a>0,即b<0,則x=-2,最大值y(max)=4a-4b+2

a>0,拋物線的影象開口向上,且-b/a=0,即b=0,則x=0,最大值y(max)=2

a<0,拋物線的影象開口向下,且-b/a<0,即b<0,則x=-b/a,最大值y(max)=3b2/a+2

a<0,拋物線的影象開口向下,且-b/a>0,即b>0,則x=-b/a,最大值y(max)=3b2/a+2

a<0,拋物線的影象開口向下,且-b/a=0,即b=0,則x=0,最大值y(max)=2

(3)如果x1x3-x4,且

高一數學練習題

3樓:關冬靈環厚

1. 本質即,f(x)-x=0時有兩個根x1,x2,且x1+x2=0

f(x)-x=0可化為

2x^2+bx+a=0(x不等於零)所以

由韋達定理,b=0,a<0.

2.由題意,f(0)=0,所以0必為一不動點

若f(x)還有其他的不動點(m,m),即存在f(m)=m,由f(x)=-f(-x),必有

f(-m)=-f[-(-m)]=-f(m)=-m,所以(-m,-m)也必為f(x)的不動點,所以設除0外f(x)有

a(a為自然數)個大於零的不動點,則必有a個小於零的不動點,共有2a+1個,即奇數個。

類似奇函式的推導,可知偶函式不定,如偶函式f(x)=x^2

有且僅有(0,0),(1,1)這兩個不動點,而偶函式f(x)=(1/2)[x^2+1]就只有(1,1)一個不動點。

4樓:k12佳音老師

回答您好,請把**發給我看看

提問我九題

回答第九題

f(5)因為5<10

所以代入第二個式子

結果為f(10)

因為10等於10

所以代入第一個式子

10+5=15

提問我天原來如此,老師在教我一道題行不

第十題回答

我看看提問

好,感謝✖️9999

回答奇函式定義f(-x)=-f(x)

然後按照定義這麼一算就出來啦

更多17條

5樓:厚憐雲賴頌

這個題要知道從哪入手

你要知道實際上求的是f(a²-2)<—f(a)但因為fx是奇函式所以就是f(a²-2)<f(—a)因為當x≥0時,f(x)=x²+4x是單調遞增函式且已知f(x)在r上為奇函式

∴f(x)在r上為單調遞增奇函式

∴要使f(a²-2)<f(—a)就要a²-2<—a∴就可以解出a了-2<a<1

6樓:恭奧功昊磊

第一題:因為f(x+1)=(x+1)方-2(x+1)+1所以f(x)=x方-2x+1=(x-1)方

第二題:(1)f(x)=3x+1,x和f(x)的定義域都是r(2):f(x)=x絕對值加1,x定義域為r,f(x)定義域為大於等於1的r

(3):f(x)=1/x

x定義域為不為0的r

,f(x)定義域為r

(4):f(x)=根號x

x和f(x)定義域皆為大於等於0

分都給我,新註冊的吧,你不用這個了,拜我為師。

7樓:似彭越禰正

1.作a關於x軸對稱,連線ab交直線l於p,可求p。

2.將(√x)+y-2-2√3=0化為x=(-y+2+2√3)^2這是拋物線,然後畫圖求解。

有問題可問!!

8樓:崔心蒼從靈

已知函式f(x)=asin2x+cos2x,且f(3/π)=2/√3-1

(求)a的值和f(x)的最大值;(2)問f(x)在什麼區間上是減函式已知f(x)=asin2x+cos2x且f(π/3)=(√3-1)/2

(√3-1)/2=asin(2π/3)+cos(2π/3)√3-1/2=a*√3/2-1/2

a=2y=f(x)=2sin2x+cos2xy-2sin2x=cos2x=√[1-(sin2x)^2]y^2+4(sin2x)^2-4y*sin2x=1-(sin2x)^2

5(sin2x)^2-4y*sin2x+y^2-1=0上方程未知數為(sin2x)的判別式△≥0,即(4y)^2-4*5*(y^2-1)≥0

y^2≤5

-√5≤y≤√5

答:a=2,f(x)最大值=√5

9樓:匿名使用者

最好問老師哦 老師知道的題目多一點! 那些東西很簡單的啊不用可以去看 明白嗎/

高一數學題

10樓:牛皮哄哄大營

證:假設a、b、c中沒有偶數,則a、b、c均為奇數。 x=[-b±√(b2-4ac)]/(2a) 要方程有有理根,√(b2-4ac)是有理數,b2-4ac是平方數。

令b2-4ac=m2 (b+m)(b-m)=4ac b+m、b-m同奇或同偶,又等式右邊4為偶數,4ac為偶數,因此只有b+m、b-m同偶,m為奇數。令a=2a-1,b=2b-1,c=2c-1,m=2m-1 (2b-1)2-4(2a-1)(2c-1)=(2m-1)2 整理,得(b2-b)+(m-m2)+2(a+c-2ac)=1 b2-b、m-m2均為偶數,2為偶數,2(a+c-2ac)為偶數,(b2-b)+(m-m2)+2(a+c-2ac)為偶數。而等式右邊1為奇數,等式恆不成立。

因此假設錯誤,a、b、c中至少有一個是偶數。

高中數學題?

11樓:

解:每臺充電樁費用12800元,

每年維修費用

xn=1000+400(n-1)=600+400n,n年維修費和

sn=n(1000+600+400n)/2=800n+200n²每年贏利是6400元,

n年可贏利6400n,

收回成本,即贏利大於成本,則有

6400n>12800+800n+200n²n²-28n+64<0,

變型為(n-14)²<196-64=132解得n-14<√132或n-14>-√132,其中11<√132=2√33<12,

即n>14-√132≈3,n<14+√132≈25。則3年後收回成本開始贏利,25年後成本大於贏利。

當n=14時,(n-14)²<132取最大值。

12樓:卿倚墨安福

首先是abc這三個字母排列的情況,有p33種情況=6.而三個d插入四個位置的情況有c43種情況=4,所以有不同的排列種數為24!!!

13樓:弘枝孝星津

由題知圓心(1,1),半徑為1

四邊形pacb面積=12*1/2*pa*ac=pa直角三角形pac

可得pa=pc^-1

開根號即是求出pc,pc為點到直線的最短距離,即(0.0)到3x+4y+8=0的最短距離

計算可得最小為

2根號2

14樓:刁煊胥歆然

將四個球的球心相連,可以得到一個各稜長均為2的一條稜立起的正四面體,即可解得答案為

4派根號2加上8/3派,答案你再算一下,我只大概算了一遍。

高中數學計算題

15樓:茅孟霜沈雅

1.令x=-1,則(2-3)^10=1=a0+a1+...+a10

式1令x=-3,則(2-3*3)^10=7^10=a0-a1+...a10

式2(式1+式2)/2=a0+a2+...+a10=(1+7^10)/2(我認為算到這步就行了,不需要算出具體的數字) 2.對兩邊x求導,則10*3*(2+3x)^9=a1+2a2(2+x)+3a3(2+x)^2+...

+10a10(2+x)^9令x=-1,則30*(-1)^9=a1+2a2+...+10a10=-30希望對您有所幫助

16樓:咖啡豆的冰咖啡

回答樓主,您好,很高興為您解答,是哪種數學題提問這道題 麻煩了

回答好的

提問好的謝謝

回答最後結果

更多9條

17樓:律景明仁琴

答案是3

(1/2)lg0.3=(1/2)lg(3/10)=lg√(3/10)=lg√(3)-lg√(10)=lg√(3)-1/2【前面的係數可以變成對數的冪把

1/2就是根號】

lg√27=lg(√3)^3=3lg(√3)【√27=(√3)^3】lg8=lg2^3=3lg2

log4(8)=log4(4*2)=log4(4)log4(2)=1

1/2=3*(1/2)

那麼總的式子是lg√27

lg8-log4(8)=3lg(√3)

3lg2-1/2

1/2lg0.3

lg2=lg√(3)

lg2-1/2

那麼就是3了

看這道題這麼亂,就想把它化簡,一般化簡以後都可以消掉的,重要的敢於嘗試地做下去

18樓:羽孝姬娟

∵dc⊥平面abc,cd∥be∴

be⊥平面abc∵

ab⊂平面abc∴be

⊥ab,在rt△abe中,由

tan∠eab=be/ab=根號3/2,ab=2得be=根號3在rt△abc中∵

ac=根號下(ab^2-bc^2)=根號(4-x^2)(0<x<2)∴

s△abc=12ac•bc=1/2x根號(4-x^2)∴v(x)=vc-abe=ve-abc=1/3s△abc•be= 根號3/6x根號(4-x^2)(0<x<2)要v(x)取得最大值,當且僅當

x根號(4-x^2)=根號(x^2(4-x^2))取得最大值∵x^2(4-x^2)≤((x^2+4-x^2)/2)^2=4當且僅當x^2=4-x^2,即

x=根號2時,「=」成立

19樓:匿名使用者

1. (0.25)^(-2)+(8/7)^(1/3)+(1/8)^(-2/3)-(1/16)^0

=16+2/(7^1/3)+4-1

=19+2/(7^1/3)

=19+2*7^(2/3)/7 分母有理化

2. 2log5 10+2log5 0.5+log2 1+log3 3

=2(log5 10+log5 0.5)+0+1= 2log5 (10*0.5)+0+1

=2log5 5+0+1

=2+1=3

20樓:不可知不知

1. (0.25)^(-2)+(8/7)^(1/3)+(1/8)^(-2/3)-(1/16)^0

=16+2/(7^1/3)+4-1

=19+2/(7^1/3)

=19+2*7^(2/3)/7

2. 沒看懂寫的啥

高一數學題,高一數學練習題

f x 2cos2x sin 2 x 4cosx 2 2cos 2x 1 1 cos 2x 4cosx 4cos 2x 2 1 cos 2x 4cosx 3cos 2x 4cosx 1 3 cosx 2 3 2 7 3 1 f 3 3 1 36 3 7 9 4 2 最大值就是當cosx 1的時候,f...

高一數學題,高一數學練習題

f x 3 x 3 1 x 3 y f x x 1 x xy x 1 x 1 y 1 f 1 x 1 x 1 f 1 x 3 1 x 3 1 3 x 3 您好,很高興為您解答,skyhunter002為您答疑解惑如果本題有什麼不明白可以追問,如果滿意記得采納如果有其他問題請採納本題後另發點選向我求助...

高一數學題,高一數學練習題

解 lga lgc lgsinb lg 2 sinb 2 2 又 0 b 90 b 45 由lga lgc lg 2 得 a c 2 2 由正弦定理得 sina sinc 2 2 即2sin 135 c 2 sinc即2 sin135 cosc cos135 sinc 2 sinc.cosc 0,得...