高數判斷奇偶性,高等數學函式的奇偶性判斷

時間 2021-09-12 15:46:44

1樓:

這樣寫簡潔倒是簡潔,但不好理解,換一下寫法:

f(0)=0

x>0時,f(x)=e^x-1,此時-x<0,所以f(-x)=1-e^[-(-x)]=1-e^x=-f(x)

x<0時,f(x)=1-e^(-x),此時-x>0,所以f(-x)=e^(-x)-1=-f(x)

所以,f(x)是奇函式

2樓:求紅終彭祖

cosx是偶函式,所以cos(-x)=cosx.

3樓:繁陽諸俊語

答:課本里的誘導公式

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

sinx是奇函式,cosx是偶函式,tanx是奇函式

4樓:扈鋒戲凡波

f(x)=xsinx+cosx是偶函式。

證明f(-x)=(-x)sin(-x)+cos(-x)用誘導公式

=-x(-sinx)+cosx

=xsinx+cosx=f(x)

y=sinx是奇函式,sin(-x)=-sinxy=cosx是偶函式,cos(-x)=cosx奇函式與偶函式關係如下:

a表示奇函式,b表示偶函式,

c表示非奇非偶函式。

a+a=a

b+b=b

a+b=c

a*a=b

b*b=b

a*b=a

用上面的關係判斷:

f(x)=xsinx+cosx

a*a+b=b+b=b

5樓:黃依用曉凡

解:f(x)=xsinx+cosx

f(-x)=(-x)sin(-x)+cos(-x)按三角函式誘導公式中, 任意角α與-α的三角函式值之間的關係sin(-x)=-sinx

cos(-x)=cosx

f(-x)=(-x)sin(-x)+cos(-x)=xsinx+cosx=f(x)

則 f(x)=xsinx+cosx 為偶函式。

望採納哦

6樓:

#三角函式誘導公式中, 任意角α與-α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=

cosα

tan(-α)=-tanα

cot(-α)=-cotα

f(x)=xsinx+cosx

f(-x)=(-x)sin(-x)+cos(-x)由#知:

sin(-x)=-sinx

cos(-x)=cosx

f(-x) =(-x)(-sinx)+cosx=xsinx+cosx=f(x)

所以 f(x)=xsinx+cosx

為偶函式。

7樓:匿名使用者

x≤0,x用-x替換,則-x<=0,可得x>=0,那麼將f(-x)與之前的屬於x>=0範圍的f(x)比較,發現是相反數,故為奇函式。

8樓:金龍

解法:依題意可得

1-e^-(-x) , -x≤0 ( -x≤0 ,則x>0)

f(-x)={

e^(-x)-1, -x>0 (-x>0, 則x<0)所以就可化為

1-e^(x) , x≥0

f(-x)={

e^(-x)-1, x<0

寫法上下換位置,且提取一個負號。即

e^(x)-1 , x>0

f(-x)= -{

1-e^(-x), x≤0

=-f(x)

所以是奇函式。

(注做題時只是沒有注意x=0的細節,應該單獨寫一下或者討論x=0的情況)

高等數學函式的奇偶性判斷

9樓:匿名使用者

(復1).e^(-1/x2)是偶函式

制,x是奇函式,所以xe^(-1/x2)是奇函式,而arctanx也是奇函式,所以f(x)=xe^(-1/x2) +arctanx是奇函式;(2).xsinx是偶函式,1+x2也是偶函式,所以f(x)=(xsinx)/(1+x2)也是偶函式;(3).f(x)=(e^x-1)/(e^x+1)=1-2/(e^x+1),f(-x)=1-(2e^x)/(e^x+1),而f(-x)+f(x)=0可知f(x)= - f(-x),所以f(x)為奇函式.

10樓:西域牛仔王

^f(x) = xln[(1+x)/(1-x)] ,baif(-x) = -xln[(1-x)/(1+x)] = xln[(1+x)/(1-x)] = f(x),

因此是偶函式。

du中間

zhi用了對數法dao則:專lnx^n = nlnx 。這裡屬 (1-x)/(1+x) = [(1+x)/(1-x)] ^ -1 。

判斷奇偶性

11樓:微雨去塵

判斷函式的奇偶性方法如下:

先看定義域是否關於原點對稱如果不是關於原點對稱,則函式沒有奇偶性;若定義域關於原點對稱;則f(-x)=f(x),f(x)是偶函式 ;f(-x)=-f(x),f(x)是奇函式

1、如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。

2、如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。

3、如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

4、如果對於函式定義域內的任意一個x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

12樓:果實課堂

如何判斷函式的奇偶性

函式奇偶性怎麼判斷,判斷函式奇偶性最好的方法

昝素花虞女 根據定義,首先看函式的定義域是不是關於原點對稱,是的話求f x 求出f x 若f x f x 偶函式 f x f x 奇函式 例,判斷f x x 首先定義域是r,關於原點對稱 f x x x f x 所以偶函式 儀明智旗語 判斷函式的奇偶性時,首先判斷它的定義域是否關於原點對稱,只有先保...

怎麼判斷函式的奇偶性,怎麼判斷複合函式的奇偶性

我愛真理 特別要說明的是函式的奇偶性只是單獨對一個函式而言,而此題中的函式 y log3 x y 3 x 是兩個函式在其定義域內,只能說明是關於直線y x對稱,不能說成是奇偶性的。這兩個函式都既不是奇函式也不是偶函式。一般地,對於函式f x 1 如果對於函式定義域內的任意一個x,都有f x f x ...

如何判斷函式在區間的奇偶性,怎麼判斷函式奇偶性?

最常用的就是導數法,利用定義證明函式y f x 在給定的區間d上的單調性的一般步驟 1 任取x1,x2 d,且x1 2 作差f x1 f x2 3 變形 通常是因式分解和配方 4 定號 即判斷差f x1 f x2 的正負 5 下結論 即指出函式 f x 在給定的區間d上的單調性 但是,如果複合函式的...