求解一道高數題,求由擺線x a tsint ,y a

時間 2021-09-11 22:34:43

1樓:

由擺線x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2π) 與橫軸所圍圖形的面積為3π*a^2。

解:根據定積分求面積公式,以x為積分變數,

可得擺線的一拱與橫軸所圍圖形的面積s為,

s=∫|y| dx=∫a(1 -cost)d(a(t - sint))

=∫a^2(1 -cost)^2dt

又由於擺線的一拱內,0≤t≤2π,所以面積為,

s=∫(0,2π)a^2*(1 -cost)^2dt

=a^2*∫(0,2π)(1-2cost+(cost)^2)dt

=a^2*∫(0,2π)1dt-2*a^2*∫(0,2π)costdt+a^2*∫(0,2π)(cost)^2dt

=a^2*∫(0,2π)1dt-2*a^2*∫(0,2π)costdt+1/2*a^2*∫(0,2π)(1+cos2t)dt

=3/2*a^2*∫(0,2π)1dt-2*a^2*∫(0,2π)costdt+1/2*a^2*∫(0,2π)cos2tdt

=3/2*a^2*(2π-0)-2*a^2*(sin2π-sin0)+1/4*a^2*(sin4π-sin0)

=3π*a^2

擴充套件資料:

1、三角函式之間的變換關係

(cost)^2+(sint)^2=1,cos2t=2(cost)^2-1=1-2(sint)^2,sin2t=2sintcost

2、定積分∫(a,b)f(x)dx的性質

(1)當a=b時,∫(a,b)f(x)dx=0。

(2)常數可以提到積分號前。即∫(a,b)k*f(x)dx=k*∫(a,b)f(x)dx。

(3)∫(a,b)(f(x)+g(x))dx=∫(a,b)f(x)dx+∫(a,b)g(x)dx。

3、定積分的應用

(1)解決求曲邊圖形的面積問題

通過圖形邊界求出x,y的區間,然後在區間中以x或者y為積分變數,進行面積的計算。

(2)求變速直線運動的路程

做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分。

2樓:兔寶寶蹦蹦

樓上的思路基本正確,積分時要將y,x轉換為用t表示的函式。

我補充一下過程吧:

s=∫|y|dx

=∫a(1-cost)dx (∵y=a(1-cost)≥0,其中a>0)

又∵x=a(t-sint)

∴dx=a(1-cost)dt

s=∫(0,2π) a²(1-cost)²dt=a²∫(0,2π) (1-cost)²dt=a²∫(0,2π) (1+cos²t-2cost)dt=a²∫(0,2π) [1+(1+cos2t)/2-2cost]dt=a²∫(0,2π) (3/2+cos2t/2-2cost)dt=a²[3t/2+sin2t/4-2sint]|(0,2π)=3πa²

3樓:羊歡草長

面積=∫ydx,積分割槽間對應與0≤t≤2∏時x的範圍即x從0到2πa(這個積分割槽間沒用),然後將x=a(t - sint),y=a(1 -cost)代入,面積=∫a(1 -cost)da(t - sint),t的範圍從0到2π,積分即可,最後結果3πa的平方。

一道高數題,求一道高數題

老黃知識共享 當x等於0時,出現分母為0的情況,沒有意義,所以不可導. 這個一看就是左右導數不一樣啊,從導數的幾何含義一眼看得出 用宕仲白風 有界區域,你看看函式,有兩個地方是有發散的 危險的 就是0和1處,在這兩個附近函式值都趨於正無窮。所以我們要分別判斷這兩點附近函式的行為來確定是否收斂。分為分...

一道高數題,一,求一道高數題

求m值,使直線l x 1 m y 2 3 z 1 4與直線l x 3 1 y 3 2 z 7 1相交 解 l 與l 相交,l 與l 必共面。設它們所在平面 的方程為 ax by cz d 0.l 的方向向量n l 的方向向量n 平面 的法向向量n n n n n 因此 n n ma 3b 4c 0....

一道高數求極限,一道高數求極限題

lim 1 tanx 1 sinx x 1 sin x x lim 1 tanx 1 sinx x 1 sin x x x 1 sin x 1 1 tanx 1 sinx lim tanx sinx 1 0 1 xsin x 1 0 1 0 lim sinx 1 cosx xsin xcosx li...