1樓:品一口回味無窮
要用到平行線性質:兩直線平行,同位角相等。來證明求證:三角形的內角和等於180°.
點悟:在△abc中,∠a、∠b、∠c是三個內角.想要證明∠a+∠b+∠c=180°,也就是要想法證明∠a+∠b+∠c=一個平角.也就是想法把三個角集中到一塊,用什麼方法好呢?——利用平行線特徵,這就需要過a點作一條平行線,即可達到目的.
過a作ef‖bc.
∴ ∠b=∠2,∠c=∠1(兩直線平行,內錯角相等).∵ ∠1+∠bac+∠2=180°,
∴ ∠c+∠bac+∠b=180°.(等量代換)見圖:
2樓:
過a作ef‖bc.
∴ ∠b=∠2,∠c=∠1(兩直線平行,內錯角相等).∵ ∠1+∠bac+∠2=180°,
∴ ∠c+∠bac+∠b=180°.(等量代換)
3樓:匿名使用者
已知:△abc
求證:三角形的內角和等於180°.
過a作ef‖bc.
∴ ∠b=∠2,∠c=∠1(兩直線平行,內錯角相等).∵ ∠1+∠bac+∠2=180°,
∴ ∠c+∠bac+∠b=180°.(等量代換)
4樓:匿名使用者
用底下那個**的圖
角dab=角abc 角eac=角acb
角dab+角bac+角eac=180度
所以角abc+角acb+角bac=180度
如何證:三角形內角和等於180度
5樓:匿名使用者
要用到平行線性質:兩直線平行,同位角相等。來證明求證:三角形的內角和等於180°.
點悟:在△abc中,∠a、∠b、∠c是三個內角.想要證明∠a+∠b+∠c=180°,也就是要想法證明∠a+∠b+∠c=一個平角.也就是想法把三個角集中到一塊,用什麼方法好呢?——利用平行線特徵,這就需要過a點作一條平行線,即可達到目的.
過a作ef‖bc.
∴ ∠b=∠1,∠c=∠2.(兩直線平行,內錯角相等).∵ ∠1+∠bac+∠2=180°,
∴ ∠b+∠bac+∠c=180°.(等量代換)畫不了圖。給你一個**,裡面有這個題的證明。
6樓:匿名使用者
到這看看:
7樓:匿名使用者
1 在一角的頂點作所對邊的平行線
2 在一個角作外角,再在這個角作所對邊的平行線
利用外角定理。角a的外角等於角b加角c之和,所以∠a+∠b+∠c=∠a+外角=180度
8樓:莫愁湖小魚
延長一條邊
因為三角形一個角外角等於另外兩個內角和
所以三角形的內角和是180度
如何說明三角形內角和是180°?小學時我們就知道三角形的內角和是180°,下面我們運用學過的平行線的知識
9樓:我愛痕跡
(1)∵ce ∥ ab,
∴∠1=∠a,∠2=∠b(兩直線平行,內錯角相等);
(2)由圖可知,∠1+∠2+∠acb=180°,∴∠a+∠b+∠acb=180°;
(3)得到結論:三角形內角和是180°.
三角形內角平分線性質定理 三角形的內角平分線分對邊所得的兩條線段與這個角的兩邊對應成比例
已知 如圖1,abc中,ad是 bac的角平分線。求證 bd dc ab ac 1 證明 過c做ce da,交ba的延長線於e 完成以下證明過程 因為ce da,所以 1 e,2 3,因為 1 2 角平分線的定義 所以 3 e,所以ae ac 等腰三角形的性質 由ce da,可知 ebc abd,所...
如何證明三角形內角和為,如何證明三角形內角和為
在平面內,做三角形的外接圓,再連線圓心和頂點,三個圓心角合360度,由圓心角是圓周角的2倍,則三角形的內角和為180度 證明三角形內角和等於180度的方法很多,現舉其中一種較為簡單的方法證明如下 已知 三角形abc中,角a 角b 角c為內角.求證 角a 角b 角c 180度.證明 延長bc到d,過點...
全等三角形的性質,全等三角形的性質
000歲飄零 三角形全等的性質 1 全等三角形的對應角相等。2 全等三角形的對應邊相等 3 全等三角形的對應頂點位置相等。4 全等三角形的對應邊上的高對應相等。5 全等三角形的對應角的角平分線相等。6 全等三角形的對應邊上的中線相等。7 全等三角形面積相等。8 全等三角形周長相等。9 全等三角形可以...