在平面直角座標系中,A 1, 1 B 1,4 C 3,1 ,求三角形的面積(運用初中知識解答)過程詳細

時間 2021-08-11 17:31:21

1樓:aq西南風

記ac的中點為d,則d的座標為(-1,0),正是ac與x軸的交點,連線bd,則bd⊥x軸且△abd與△cbd面積相等。.

記ch為△cbd中bd邊上的高,則ch=(-1)-(-3)=2,bd=4,

△abc的面積=2×△cbd的面積=4×2=8。

2樓:匿名使用者

分析:(1)由於摺疊前後三角形全等,可得出d、e兩點座標,可求直線de解析式;

(2)由於拋物線過點c(0,6),對稱軸是y軸,可設拋物線解析式y=ax2+6,由y=-x+12:得m(12,0),將m點代入拋物線解析式可確定解析式,聯立直線與拋物線解析式可得唯一點座標;

(3)由摺疊性質可證△cod∽△bde,得出相似比,設cd=a,∵ae=b,∴db=10-a,be=6-b,可得出a與b的二次函式關係式,用二次函式性質解答本題.

解答:解:

(1)已知a(10,0),c(0,6),由摺疊可知d(6,6),e(10,2),

設直線de解析式:y=kx+b,則{6k+b=610k+b=2,

解得{k=-1b=12

∴直線de的解析式為:y=-x+12;

(2)過點m、c且關於y軸對稱的拋物線與直線de的公共點只有一個;

設拋物線解析式y=ax2+6,

由y=-x+12:得m(12,0),

把m(12,0)代入拋物線解析式得a=-124,

聯立{y=-124x2+6y=-x+12

得x1=x2=12;

故公共點唯一,是(12,0);

(3)設cd=a,∵ae=b,

∴db=10-a,be=6-b,由摺疊可知∠cdf=2∠cdo,∠bdg=2∠bde,而∠cdf+∠bdg=180°,

∴∠2∠cdo+2∠bde=180°,∠cdo+∠bde=90°,

又∵∠cdo+∠cod=90°

∴∠cod=∠bde

∴△cod∽△bde

∴cobd=cdbe即610-a=a6-b

解得b=16a2-53a+6=16(a-5)2+116;

故當a=5時,b的最小值是116.

點評:本題考查了座標系裡的軸對稱問題,運用軸對稱的性質求點的座標及函式解析式,會用全等,相似的知識解答有關問題.

採納吧?!(*^__^*) 嘻嘻

3樓:匿名使用者

ab=√29,ac=√29,作ad垂直cb於d點,則ad=,過a、c分別作y軸的平行線a,b,過a、b分別作x軸的平行線c,d與a,b分別交於d,e,f則三角形abc的面積=矩形aefd的面積—直角三角形abe的面積—直角三角形acd的面積—直角三角形bcf的面積=4×5—5×2/2—3×2/2—4×2/2=8

4樓:匿名使用者

ab直線:(y-4)/(-1-4) = (x+1)/(1+1) 即:5x+2y-3=0

過c點做cd//x軸交ab於d,則s(abc)=s(acd)+s(bcd)=1/2|cd|*|y3-y1|+1/2|cd|*|y3-y2|

而d點座標為(1/5 ,1)

|cd|=|-3-1/5|= 16/5

|y3-y1| = |1-(-1)|=2

|y3-y2|=|1-4| = 3

∴s(abc)= 1/2* 16/5*(2+3)=8

5樓:資深博士

如圖,取點o(-1,1),分別連ao,bo,co三角形boc是直角三角形,bo與co互為底和高,bo=3,co=2,面積為2*3/2=3

三角形boa中,bo為底,點a和點o的x座標差為高(2)面積為3*2/2 =3

三角形coa中,co為底,點a和點o的y座標差為高(2)面積為2*2/2 =2

總面積3+3+2

6樓:玲瓏小金

用割補法做

三點做個長方形,再用s長方形=20 減去三個小三角形為20-3-5-4=8

在平面直角座標系中已知A 1,4 ,B 2, 2 點P為x軸上一點,則PA減pB的值最大時,點P座標

先作b 2,2 關於x軸的對稱點b 2,2 聯結ab 與x軸的交點p 3,0 就是所求的點,先利用ab 兩點求出ab 方程 y kx m,再求p點座標 可以證明 如果p點落在e點的位置時,則有 ea eb ea eb 只有當p點落在ab 與x軸的交點的位置時,才有 pa pb pa pb ab 這時...

如圖,在平面直角座標系中,點B的座標是( 1,0),點C為

冰封無水 鑑於我不知你現在的知識水平所以,我以我的方法解題。解 1 由題知,bac bdc,設ac交bd於點p,則 apb dpc,在三角形apb和dpc中,易知 abd acd.2 作垂線dq be於點q,在直角三角形bqd和直角三角形cmd中,bd cd,且 abd acd,易證直角三角形bqd...

已知平面直角座標系中A 4,6 ,B 0,2 ,C

過點a作ad y軸,垂足為d,o為座標原點.adb為直角三角形,由點a的座標為 4,6 點b的座標為 0,2 可得,ad 4,bd 4,adb的面積為ad bd 2 8,cob為直角三角形,由點c的座標為 6,0 點b的座標為 0,2 可得,co 6,bo 2,cob的面積為co bo 2 6,四邊...