如圖,在同一平面直角座標系中,y ax b和二次函式y ax 2 bx c的圖象可能為

時間 2021-06-27 22:13:15

1樓:匿名使用者

a y=ax+b a<0 y=ax^2+bx+c a>0 不可能。n

b y=ax+b a<0 y=ax^2+bx+c 頂點在x=-b/2a>0 與圖形不合。n

c x=0時兩個圖形相交 b=c,

,y=ax+b的零點在 x=b/﹙-a﹚=2b/﹙-2a﹚

y=ax^2+bx+b的大零點在[-b+√﹙b²-4ab﹚]/2a=[b-√﹙b²-4ab﹚]/﹙-2a﹚ 圖中b>0

2b>b>[b-√﹙b²-4ab﹚] ﹙-2a﹚>0

,y=ax+b的零點>y=ax^2+bx+b的大零點, 與圖形矛盾。n

d 剩下的 y∴選d

2樓:西山樵夫

根據y=ax+b的影象上述四個備選圖形都是a<0,b>0,對於拋物線都應開口向下,所以首先排除a選項。由於拋物線的對稱軸為x=-b/2a,當a<0,b>0時,-b/2a>0,對稱軸應在x軸的正半軸。所以應排除b,。

對於選項c,由於拋物線與直線有一個交點,交點恰為兩個影象與y軸的交點,即b=c.,這時ax²+bx+c=ax²+bx+b=0的兩個根 x1x2=b/a>0,即拋物線與x軸的兩個交點的橫座標在x軸的同側。所以應排除c。

故選d。

如圖,在同一平面直角座標系中,y=ax+b和二次函式y=ax^2+bx的圖象可能為

3樓:匿名使用者

答案:c

當a>0時,y=ax^2+bx 的開口朝上 y=ax+b 為“撇”

且當b>0時,y=ax^2+bx 的對稱軸=b/-2a 即對稱軸在y軸左邊

所以a、b不對

當a<0時,y=ax^2+bx 的開口朝下 y=ax+b 為”捺“且當b<0時,y=ax^2+bx 的對稱軸=b/-2a 即對稱軸在y軸右邊

所以d、不對 c對

其實一共應該分析4次。

1.當a>0時 b>0時

2.當a>0時 b<0時

3.當a<0時 b>0時

4.當a<0時 b<0時

因為,分析時有分析重的情況,所以快的話分析兩次就行。

4樓:匿名使用者

二次函式y=ax的平方+mc的頂點為(1,mc) 所以mc=8k,即m=8k/c 又(-k,k)在二次函式y=ax的平方+mc上, 則有k=a*k*k+mc, 即k=a*k*k+8k,(k不等於1)a則a*k+8=1, a=-8/k,又ac=-8 有c*(-8/k)=-8,則c/k=8,k/c=8/8

5樓:匿名使用者

∵二次函式y=ax²+bx圖象經過原點(0,0)∴選a

在同一直角座標系中,一次函式y=ax+b和二次函式y=ax2+bx的圖象可能為_____

6樓:小言微笑

a、由拋物線可知,a>0,x=-b

2a>0,得b<0,由直線可知,a>0,b<0,故本選項正確;

b、由拋物線可知,a>0,由直線可知,a<0,故本選項錯誤;

c、由拋物線可知,a<0,x=-b

2a>0,得b>0,由直線可知,a<0,b<0,故本選項錯誤;

d、由拋物線可知,a<0,由直線可知,a>0,故本選項錯誤.故答案是:a.

在同一平面直角座標系中,一次函式y=ax+b和二次函式y=ax2+8x+b的圖象可能為

7樓:皮皮鬼

有圖知a<0這沒問bai題的

但是直du線y=ax+b與y軸的交點為(zhi0,b),知b<0

故在二次函式函dao數y=ax^2+8x+b的影象版與x軸的有兩個交點,

權知方程ax^2+8x+b=0有兩根,且兩根一正一負,設兩根為x1,x2

則x1x2<0

又有x1x2=b/a

知b/a<0

由a<0

知b>0

這就是矛盾了。

在同一平面直角座標系中,一次函式y=ax+c和二次函式y=ax2+c的圖象大致所示中的(  )a.b.c.d

8樓:匿名使用者

a、由一次函式的圖象可知a>0  c>0,由二次函式的圖象可知a<0,兩者相矛盾;

b、由一次函式的圖象可知a<0  c>0,由二次函式的圖象可知a<0,兩者相吻合;

c、由一次函式的圖象可知a<0  c>0,由二次函式的圖象可知a>0,兩者相矛盾;

d、由一次函式的圖象可知a<0  c<0,由二次函式的圖象可知a>0,兩者相矛盾.

故選b.

(2010?雙流縣)已知二次函式y=ax2+bx+c的圖象如圖所示,則在同一直角座標系中,一次函式y=ax+b和反比例

9樓:亞由美

由二次函式圖象可知a>0,c>0,

由對稱軸x=-b

2a>0,可知b<0,

∴一次函式y=ax+b的圖象經過

一、三、四象限,

反比例函式y=c

x的圖象在

一、三象限.

故選b.

如圖,在平面直角座標系中,ABC的頂點的座標分別是A 2,3 B 2,1 C 3,

飄渺的綠夢 第一個問題 ac的斜率 3 2 2 3 1,bc的斜率 1 2 2 3 1,ac bc,abc是直角三角形。又 ac 3 2 2 2 3 2 2,bc 1 2 2 2 3 2 2 ac bc rt abc是以ab為底邊的等腰直角三角形。第二個問題 旋轉體顯然是一個圓錐,圓錐的底面半徑 b...

如圖,在平面直角座標系中,已知點A,B,C的座標分別為 1,0 5,0 0,

1 設y ax bx c a 5b c 0 a25 5b c 0 a 0 b 0 c 2 解得 a 0.4 b 1.6 c 2此拋物線的解析式 y 0.4x 1.6x 2 2 當0 t 1,s 1 t 6 t 當1 t 6,s t 1 6 t 當t 3.5時,s最大 25 4 3 pbf不能成為直角...

如圖1,在平面直角座標系中,O為座標原點,直線l y1 2x m與x y軸的正半軸分別相交於點A B,過點C

1 解 點c為 4,4 cd y軸,且cd 10.則 點d橫座標也為 4 且點d到x軸的距離為10 4 6.即點d為 4,6 直線y 1 2x m過點d 4,6 則 6 1 2 4 m,m 4.故 直線l的解析式為y 1 2 x 4.2 直線y 1 2 x 4交y軸於b 0,4 交x軸於a 8,0 ...