1樓:匿名使用者
(1)x=(a+d)/2
第一個方程中方程兩邊的分母中常數項的和都是7,x的值是7/2,而(1/x-a)-(1/x-b)=(1/x-c)-(1/x-d)可變形為:(1/x-a)+(1/x-d)=(1/x-c)+(1/x-b),其中a+d=b+c,所以x=(a+d)/2
(2)x=7/2
(x-1)/(x-2)-(x-3)/(x-4)=(x-2)/(x-3)-(x-4)(x-5)
移項得:(x-1)/(x-2)+(x-4)(x-5)=(x-2)/(x-3)+(x-3)/(x-4)
變形得:-(x-1)/(x-2)-(x-4)(x-5)=-(x-2)/(x-3)-(x-3)/(x-4)
方程兩邊都加2:1-(x-1)/(x-2)+1-(x-4)(x-5)=1-(x-2)/(x-3)+1-(x-3)/(x-4)
整理:1/(x-2)+1/(x-5)=1/(x-3)+1/(x-4)
x=7/2
請採納。
2樓:
解:1、
1/(x-2)+1/(x-5)=1/(x-3)+1/(x-4)
等號兩邊的分母常數項分別為2+5=7,3+4=7,解x=7/2
1/(x-7)-1/(x-5)=1/(x-6)-1/(x-4)變形後得1/(x-7)+1/(x-4)=1/(x-6)+1/(x-5)
等號兩邊的分母常數項分別為7+4=11,6+5=11,解x=7/2
根據以上兩個算式得以下規律:
當等號兩邊的算式均為兩項相加,分子為1(或分子為t時),分母為(x-常數),並且等號兩邊算式得分母常數項和m與n相等時,方程的解x=t*m/2或x=t*n/2
所以變形方程(1/x-a)-(1/x-b)=(1/x-c)-(1/x-d)得,1/(x-a)+1/(x-d)=1/(x-b)+1/(x-c)
根據以上推出的規律的以上方程得解
x=(a+d)/2或x=(b+c)/2
2、(x-1)/(x-2)-(x-3)/(x-4)=(x-2)/(x-3)-(x-4)/(x-5)
變形以上方程得
(x-1)/(x-2)+(x-4)/(x-5)=(x-2)/(x-3)+(x-3)/(x-4)
化簡方程過程為以下:
(x-2+1)/(x-2)+(x-5+1)/(x-5)=(x-3+1)/(x-3)+(x-4+1)/(x-4)
(x-2)/(x-2)+1/(x-2)+(x-5)/(x-5)+1/(x-5)=(x-3)/(x-3)+1/(x-3)+(x-4)/(x-4)+1/(x-4)
1+1/(x-2)+1+1/(x-5)=1+1/(x-3)+1+1/(x-4)
1/(x-2)+1/(x-5)=1/(x-3)+1/(x-4)
根據第一個問題得出的規律
方程得解
x=(2+5)/2=7/2
3樓:日出伏羲
(1)x=(a+d)/2=(b+c)/2
(2)x=7/2
解方程:1/(x-6)-1/(x-5)=1/(x-4)-1/(x-3)
4樓:雪之凝
解:bai1/(x-6)-1/(x-5)=1/(x-4)-1/(x-3)
(x-5-x+6)/(x-5)(x-6)=(x-3-x+4)/(x-3)(x-4)
1/(x-5)(x-6)=1/(x-3)(x-4)(x-5)(x-6)=(x-3)(x-4)x^2-7x+12=x^2-11x+30
解得du:x=9/2
希望能zhi幫上你
,不明dao白還可以專追問,呵屬呵
5樓:匿名使用者
解:1/(x-6)-1/(x-5)=1/(x-4)-1/(x-3)[(x-5)-(x-6)]/[(x-6)(x-5)]=[(x-3)-(x-4)]/[(x-4)(x-3)]
(x-5-x+6)/[(x-6)(x-5)]=(x-3-x+4)/[(x-4)(x-3)]
1/[(x-6)(x-5)]=1/[(x-4)(x-3)](x-6)(x-5)=(x-4)(x-3)x²-11x+30=x²-7x+12
-11x+7x=12-30
-4x=-18
x=18/4
x=9/2
6樓:丁槐邰翔
3/x+6/x-1=x+5/x(x-1)
(9x-3)/x(x-1)
=(x+5)/x(x-1)
9x-3
=x+58x=
8x=1經檢驗,x=1時,方程分母為0,無意義
所以該方程無解
(1)x-3/x-1+x²-2/(x-1)(x-7)=1+x-5/x-7 (2)2x-1/x+4-5=96/x²-16-1-3x/4-x
7樓:小百合
(1)(x-3)/(x-1)+(x²-2)/(x-1)(x-7)=1+(x-5)/(x-7)
兩邊同乘以(x-1)(x-7)得:
(x-3)(x-7)+x²-2=(x-1)(x-7)+(x-5)(x-1)
4x=-7
x=-7/4
代入原方程驗證:x=-7/4是原方程的解。
(2)(2x-1)/(x+4)-5=96/(x²-16)-(1-3x)/(4-x)
兩邊同乘以(x²-16)得:
(2x-1)(x-4)+5(x²-16)=96+(1-3x)(x+5)
2x²-5x-37=0
x=(5±√321)/4
代入原方程驗證:x=(5±√321)/4都是原方程的解。
解方程(x-1/x-2)+(x-7/x-8)=(x-3/x-4)+(x-5/x-6)
8樓:匿名使用者
(x-1)/(x-2)+(x-7)/(x-8)=(x-3)/(x-4)+(x-5)/(x-6)
(x-2+1)/(x-2)+(x-8+1)/(x-8)=(x-4+1)/(x-4)+(x-6+1)/(x-6) (此步對分子加1減1,是簡便演算法)
1+1/(x-2)+1+1/(x-8)=1+1/(x-4)+1+1/(x-6)
1/(x-2)+1/(x-8)=1/(x-4)+1/(x-6)
1/(x-8)-1/(x-4)=1/(x-6)-1/(x-2) (此步移項成左右相減,是再次簡便演算法)
(x-4-x+8)/(x-8)(x-4)=(x-2-x+6)/(x-6)(x-2)
4/(x-8)(x-4)=4/(x-6)(x-2)
(x-8)(x-4)=(x-6)(x-2)
x^2-12x+32=x^2-8x+12
4x=20
x=5驗算:
1/3-1/3=1-1(驗算也正確)
9樓:匿名使用者
(x-1)/(x-2)+(x-7)/(x-8)=(x-3)/(x-4)+(x-5)/(x-6)
1+1/(x-2)+1+1/(x-8)=1+1/(x-4)+1+1/(x-6)
註釋 (x-1)/(x-2)=[(x-2)+1]/(x-2)=(x-2)/(x-2)+1/(x-2)=1+1/(x-2)
1/(x-2)+1/(x-8)=1/(x-4)+1/(x-6)
1/(x-8) -1/(x-6) =1/(x-4)-1(x-2)
[(x-6) -(x-8)]/[(x-6)(x-8)]=[(x-2)-(x-4)]/[(x-4)(x-2)]
2/[(x-6)(x-8)]=2/[(x-4)(x-2)]
(x-6)(x-8)=(x-4)(x-2)
x²-14x+48=x²-6x+8
x=5檢驗:
方程(x-1/x-2)-(x-3/x-4)=(x-2/x-3)-(x-4/x-5)解為x=7/2,(1/x-7)-(1/x-5)=(1/x-6)-(1/x-4)解為x=11/2
10樓:匿名使用者
(1/x-7)+(1/x-1)=(1/x-6)+(1/x-2)1/(x-7)-1/(x-6)=1/(x-2)-1/(x-1)(x-6-x+7)/[(x-7)(x-6)]=(x-1-x+2)/[(x-1)(x-2)]
x方-3x+2=x方-13x+42
10x=40
x=4(1/x+a)-(1/x+b)=(1/x+c)-(1/x+d)(x+b-x-a)/[(x+a)(x+b)]=(x+d-x-c)/[(x+c)(x+d)]
b-a=d-c
x方+(a+b)x+ab=x方+(c+d)x+cdx=(cd-ab)/(a+b-c-d)
11樓:
1/(x-7)-1/(x-5)=1/(x-6)-1/(x-4)[(x-5)-(x-7)]/[(x-5)*(x-7)]=[(x-4)-(x-6)]/[(x-4)*(x-6)]
2/(x^2-12x+35)=2/(x^2-10x+24)x^2-12x+35=x^2-10x+24-2x+11=0
x=11/2
x 4 的解是x 7 2 方程 1 x 4 的解是x
1 是4 2 是 a b 2 1 x 4 2 x a d 2 c b 2 這題是找規律嗎?還是要證明 1 1 x 7 1 x 6 1 x 2 1 x 1 移項 通分 x 7 x 6 x 2 x 1 x 4 2 同樣是先移項,然後你會發現,只有當其中一個分式的分子 0是方程在有解,即x a d 2或 ...
方程(x 3)(x 1)6x 4的解是
風歸雲 x 2 4x 3 6x 4 x 2 2x 1 0 x 2 4 4 2 2 2 2 2 x1 1 2 x2 1 2 方程 x 3 x 1 6x 4的解是 x1 1 2,x2 1 2 2y 1 2 3 2y 1 2 0 2y 1 1 2y 1 2 02y 2y 1 0 y1 0 y2 1 2 方...
4X 10 5x 6解方程過程,4x 10 15解方程?
6 10 5x 4x 解得x 16 希望採納 5x 4x 10 6 x 16 5x 4x 10 6 x 16 4x 10 15解方程?4x 15 10 4x 5 x 5 4 4x 10 5x 2解方程 4x 5x 10 2 x 12 x 12 解 x 12 4x 16 6x 10解方程要過程 解 6...