1樓:數學愛好
解1.an=2^(n-1)
a3/a1=q²=4
a1+a3+…+a2n+1
=a1(1-4^(n+1))/(1-4)
=4^(n+1)/3-1/3
2.就是把三角形分成2個面積相等的兩塊
那麼割線要經過三角形的中線
三角數斜邊上的高最短,另外2條中線一樣長,為最長線段(1)這個問題就是要分割線最短
分割線斜邊ab上的高
(2)這個問題就是求最長分割線
分割線為經過a的中線或者經過b的中線
2樓:seven的夏天
s(1) = a(1) = 1,
s(n) = 2^(n-1), n = 1,2,...
n>1時,a(n)=s(n)-s(n-1)=2^(n-1)-2^(n-2)=2^(n-2)
a(1) + a(3) + ... + a(2n+1) = 1 + 2^1 + ... + 2^(2n+1-2)
= 1 + 2[1 + 4 + ... + 4^(n-1)]= 1 + 2[4^n - 1]/(4-1)= 1 + 2[4^n-1]/3.
高一數學題及答案 5
3樓:齊明水
集合裡最普通的題bai目吧,樓主在du預習功課麼zhi?
a∩b ={
daox | -1 < x < 2}
a∪b ={x | -4≤
版 x ≤3}
cub ={x | x ≤ -1 或 x > 3}cub∪p ={x | x ≤ 0 或 x ≥ 5/權2}= pcup ={x | 0 < x < 5/2 }a∩b∩cup ={x | 0 < x < 2}
4樓:匿名使用者
a∩b=
cub∪p=
cup=
5樓:孔智零明珠
第一問把cos2c用公式變成1-2sinc平方等於負四分之一
然後化簡就可以了
第二問角化邊
所以2a=c
所以c等於4
求cosc用餘弦定理
就可以求出b邊了
6樓:隆蓉城曉君
畫簡圖設矩形一邊長為x
圓心角60度求出另一邊長為2(20-√
3/3)
x>00<20-√3/3x<20得x∈回(0,20√3)矩形面積答=2(20-√3/3x)x=-2√3/3(x²-20√3x)==-2√3/3(x-10√3)²+200√3
所以x=10√3時,面積最大為200√3
高一數學練習題
7樓:關冬靈環厚
1. 本質即,f(x)-x=0時有兩個根x1,x2,且x1+x2=0
f(x)-x=0可化為
2x^2+bx+a=0(x不等於零)所以
由韋達定理,b=0,a<0.
2.由題意,f(0)=0,所以0必為一不動點
若f(x)還有其他的不動點(m,m),即存在f(m)=m,由f(x)=-f(-x),必有
f(-m)=-f[-(-m)]=-f(m)=-m,所以(-m,-m)也必為f(x)的不動點,所以設除0外f(x)有
a(a為自然數)個大於零的不動點,則必有a個小於零的不動點,共有2a+1個,即奇數個。
類似奇函式的推導,可知偶函式不定,如偶函式f(x)=x^2
有且僅有(0,0),(1,1)這兩個不動點,而偶函式f(x)=(1/2)[x^2+1]就只有(1,1)一個不動點。
8樓:k12佳音老師
回答您好,請把**發給我看看
提問我九題
回答第九題
f(5)因為5<10
所以代入第二個式子
結果為f(10)
因為10等於10
所以代入第一個式子
10+5=15
提問我天原來如此,老師在教我一道題行不
第十題回答
我看看提問
好,感謝✖️9999
回答奇函式定義f(-x)=-f(x)
然後按照定義這麼一算就出來啦
更多17條
9樓:厚憐雲賴頌
這個題要知道從哪入手
你要知道實際上求的是f(a²-2)<—f(a)但因為fx是奇函式所以就是f(a²-2)<f(—a)因為當x≥0時,f(x)=x²+4x是單調遞增函式且已知f(x)在r上為奇函式
∴f(x)在r上為單調遞增奇函式
∴要使f(a²-2)<f(—a)就要a²-2<—a∴就可以解出a了-2<a<1
10樓:恭奧功昊磊
第一題:因為f(x+1)=(x+1)方-2(x+1)+1所以f(x)=x方-2x+1=(x-1)方
第二題:(1)f(x)=3x+1,x和f(x)的定義域都是r(2):f(x)=x絕對值加1,x定義域為r,f(x)定義域為大於等於1的r
(3):f(x)=1/x
x定義域為不為0的r
,f(x)定義域為r
(4):f(x)=根號x
x和f(x)定義域皆為大於等於0
分都給我,新註冊的吧,你不用這個了,拜我為師。
11樓:似彭越禰正
1.作a關於x軸對稱,連線ab交直線l於p,可求p。
2.將(√x)+y-2-2√3=0化為x=(-y+2+2√3)^2這是拋物線,然後畫圖求解。
有問題可問!!
12樓:崔心蒼從靈
已知函式f(x)=asin2x+cos2x,且f(3/π)=2/√3-1
(求)a的值和f(x)的最大值;(2)問f(x)在什麼區間上是減函式已知f(x)=asin2x+cos2x且f(π/3)=(√3-1)/2
(√3-1)/2=asin(2π/3)+cos(2π/3)√3-1/2=a*√3/2-1/2
a=2y=f(x)=2sin2x+cos2xy-2sin2x=cos2x=√[1-(sin2x)^2]y^2+4(sin2x)^2-4y*sin2x=1-(sin2x)^2
5(sin2x)^2-4y*sin2x+y^2-1=0上方程未知數為(sin2x)的判別式△≥0,即(4y)^2-4*5*(y^2-1)≥0
y^2≤5
-√5≤y≤√5
答:a=2,f(x)最大值=√5
13樓:匿名使用者
最好問老師哦 老師知道的題目多一點! 那些東西很簡單的啊不用可以去看 明白嗎/
高中數學題?
14樓:b公司
ab.bc=(ad+db).bc=ad.
bc+db.bc,因為ad⊥bc,所以ad.bc=0,所以ab.
bc=db.bc=|db||bc|cos180°=-15
a.b=|a||b|cos60°=4cos75°x8sin15°xcos60°=32xcos(45°+30°)xsin(45°-30°)x1/2 =16(cos45°cos30°-sin45°sin30°)x(sin45°cos30°+cos45°sin30°) =4
高一數學題(必修一)
15樓:匿名使用者
2lg(x-2y)=lgx+lgy
lg(x-2y)^2=lgxy
(x-2y)^2=xy>0
x^2-5xy+4y^2=0
(x-y)(x-4y)=0
x=y(代入不合x-2y>0),x=4y
x/y=4選b
16樓:匿名使用者
2lg(x-2y)=lg(x-2y)^2,lgx+lgy=lgxy。
所以(x-2y)^2=xy,即x^2+4y^2=5xy。兩邊同時除以xy,得x/y+4y/x=5.
令x/y=t,則t+4/t=5.得t=1或t=4.
t=1得x=y,帶入lg(x-2y)得lg(-x)。則x<0,與lgx(x>0)不符,所以x/y=4.
17樓:yicun已被搶注
lg(x-2y)²=lg(xy)
(x-2y)²=xy
x²-4xy+4y²=xy
x²-5xy+4y²=0
兩邊同時除以y²
(x/y)²-5x/y+4=0
(x/y-1)(x/y-4)=0
x/y=1或x/y=4
因為x>0,y>0,x-2y>0
x/y=4
18樓:普翼煙清昶
首先1.f(x)=x的平方-2ax-1應該先看看其頂點橫座標{其頂點橫座標用f(c)表示}是否屬於{0.2}如果是f(c)是最大值
然後再比較f(0)和f(2)就能確定最小值瞭如果不屬於則{0.2}是f(x)的單調區間只需比較f(0)和f(2)的大小即可決定最大或最小值
高一數學題~
19樓:我不是他舅
x^2-x-1/2=(x-1/2)^2-3/4>=3/4arcsin是增函式,值域是[-π/2,π/2]所以此處y值域是[-arcsin(3/4),π/2]因為arcsin定義域是[-1,1]
所以(x-1/2)^2-3/4<=1
(x-1/2)^2<=7/4
-√7/2<=x-1/2<=√7/2
(1-√7)/2<=x<=(1+√7)/2(x-1/2)^2-3/4對稱軸x=1/2,開口向上所以(1-√7)/2<=x<=1/2是減函式1/2<=x<=(1+√7)/2是增函式
arcsin本身是增函式
所以增區間[1/2,(1+√7)/2]
減區間[(1-√7)/2,1/2]
20樓:緱宜嘉禚章
求距離用體積法吧。很方便的。
因為v-d1-dbe(即將△dbe看成底面,d1看成定點的三稜錐的體積,應該看的懂吧)=v-e-d1db,即1/3*s△dbe*所求的距離=1/3*s△d1db*點e到面d1db的距離(體積公式)。點e到面d1db的距離即是ef,即是1/2點a到點c的距離(不用解釋吧),s△deb的面積也很好求(很標準的等腰三角形,求出任意兩邊用勾股定理就可以求出面積了),而s△d1db是直角三角形,面積當然好求,又原式左右2邊1/3消掉了,只剩所求距離為未知量,只要知道四稜柱的稜長就可得到答案了。
21樓:丘潔岑琴軒
tan(7+8)=tan15
--->(tan7+tan8)/(1-tan7tan8)=tan15--->tan7+tan8=tan15(1-tan7tan8)原式=[(1-tan7tan8)-tan15(1-tan7tan8)]/[(1-tan7tan8)+tan15(1-tan7tan8)]
=(1-tan7tan8)(1-tan15)/[(1-tan7tan8)(1+tan15)]
=(1-tan15)/(1+tan15)
=(tan45-tan15)/(1+tan45tan15)=tan(45-15)
=tan30
=√3/3.
高一數學題目 10
22樓:
證:假設a、b、c中沒有偶數,則a、b、c均為奇數。 x=[-b±√(b2-4ac)]/(2a) 要方程有有理根,√(b2-4ac)是有理數,b2-4ac是平方數。
令b2-4ac=m2 (b+m)(b-m)=4ac b+m、b-m同奇或同偶,又等式右邊4為偶數,4ac為偶數,因此只有b+m、b-m同偶,m為奇數。令a=2a-1,b=2b-1,c=2c-1,m=2m-1 (2b-1)2-4(2a-1)(2c-1)=(2m-1)2 整理,得(b2-b)+(m-m2)+2(a+c-2ac)=1 b2-b、m-m2均為偶數,2為偶數,2(a+c-2ac)為偶數,(b2-b)+(m-m2)+2(a+c-2ac)為偶數。而等式右邊1為奇數,等式恆不成立。
因此假設錯誤,a、b、c中至少有一個是偶數。
高一數學題,高一數學題及答案
解析 首先函式定義域不是r,不能隨便使用f 0 0 可以應用奇函式定義,f x f x 可以得到 2 a ax 1 x 1 x 2 a ax 計算出a 1,原函式為ln 1 x 1 x 函式以 e 1 為底,首先真數 1 x 1 x 0,其次真數和底不在同一範圍時,函式值小於零,所以 1 x 1 x...
高一數學題,高一數學題及答案
設等差數列an a1 n 1 d,sn na1 n n 1 d 2 d 2 n n a1 d 2 n 為乘號,可見前n項和公式為一元二次表示式 所以,an bn 7n 1 4n 2 7n n n 4n n 2n 所以,an 7n n n bn 4n n 2n又因a1 a3 2a2 等差中項性質 a6...
高一數學題,高一數學題及答案
由題意得,圓心在直線y 2x上 所以設圓心為 a,2a 則圓心到直線x y 0的距離為d a 2a 根號 1 2 1 2 根號 r 2 4根號2 2 2 所以解方程得 a 2或,a 2 所以該圓的方程為 x 2 2 y 4 2 10,或 x 2 2 y 4 2 10 算出弦心距為根號2,設圓心為 x...