1樓:丶丨鑫
m(5ax+ay-1)-m(3ax-ay-1)=5amx+amy-m-3amx+amy+m=2amx+2amy
=2am(x+y)
很高興為您解答,祝你學習進步!【學習寶典】團隊為您答題。
有不明白的可以追問!如果您認可我的回答。
請點選下面的【選為滿意回答】按鈕。
如果有其他問題請另發或點選向我求助,答題不易,請諒解,謝謝!
2樓:宇文仙
m(5ax+ay-1)-m(3ax-ay-1)=m*[(5ax+ay-1)-(3ax-ay-1)]=m(2ax+2ay)
=2am(x+y)
如果不懂,請追問,祝學習愉快!
3樓:匿名使用者
m(5ax+ay-1)-m(3ax-ay-1)=m(5ax+ay-1-3ax+ay+1)=m(2ax+2ay)
=2ma(x+y)
祝你學習進步!
4樓:匿名使用者
=m[(5ax+ay-1)-(3ax-ay-1)]=m(5ax+ay-1-3ax+ay+1)=m(2ax+2ay)
=2am(x+y)
5樓:匿名使用者
m(5ax+ay-1)-m(3ax-ay-1)=m(5ax+ay-1-3ax+ay+1)=m(5ax+2ay-3ax)
=am(5x+2y-3x)
=am(2x+2y)
=2am(x+y)
(1)(a-b)的三次方-2(b-a)的平方+(a-b)(2)m(5ax+ay-1)-m(3ax-ay-1)(3)x的4次方-x的平方y的四次方
6樓:大懶羊
(1)(a-b)(a-b-1)^2 (2)2am(x y) (3)x^2(x y^2)(x-y^2)補:(x-1)(x-2)
因式分解的練習題
7樓:彭雲杉
. 2m2x+4mx2的公因式___________。
2. a2b+ab2+a3b3的公因式_____________。
3. 5m(a-b)+10n(b-a)的公因式____________。
4. -5xy-15xyz-20x2y=-5xy(____________).
自主學習:
1. 張老師準備給航天建模競賽中獲獎的同學頒發獎品。他來到文具商店,經過選擇決定買單價16元的鋼筆10支,5元一本的筆記本10本,4元一瓶的墨水10瓶,由於購買物品較多,商品售貨員決定以9折**,問共需多少錢。
關於這一問題兩位同學給出了各自的做法。
方法一:16×10×90%+5×10×90%+4×10×90%=144+45+36=225(元)
方法二:16×10×90%+5×10×90%+4×10×90%=10×90%(16+5+4)=225(元)
請問:兩位同學計算的方法哪一位更好?為什麼?
答案:第二位同學(第二種方法)更好,因為第二種方法將因數10×90%放在括號外,只進行過一次計算,很明顯減小計算量。
2. (1)多項式ab+bc各項都含有相同的因式嗎?多項式3x2+x呢?多項式mb2+nb呢?
(2)將上面的多項式分別寫成幾個因式的乘積,說明你的理由,並與同位交流。
答案:(1)多項式ab+bc各項都含有相同的因式b,多項式3x2+x各項都含有相同的公因式x,多項mb2+nb各項都含有相同的公因式b。
3. 將下列各式分解因式:
3x+6; 7x2-21x; 8a3b2-12ab3c+abc; a(x-3)+2b(x-3); 5(x-y)3+10(y-x)2。
答案:(1)3x+6=3x+3×2=3(x+2) (2)7x2-21x=7x•x-7x•3=7x(x-3)
(3)8a3b2-12ab3c+abc=ab•8a2b-ab•12b2c+ab•c=ab(8a2b-12b2c+c)
(4)a(x-3)+2b(x-3)=(x-3)(a+2b)
(5)5(x-y)3+10(y-x)2=5(x-y)3+10[-(x-y)]2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)
4. 把下列各式分解因式:
(1)3x2-6xy+x (2)-4m3+16m2-26m
答案:(1)3x2-6xy+x=x(3x-6y+1) (2)-4m3+16m2-26m=-2m(2m2-8m+13)
5. 把 分解因式
答案: =
6. 把下列各式分解因式:
(1) 4q(1-p)3+2(p-1)2
(2) 3m(x-y)-n(y-x)
(3) m(5ax+ay-1)-m(3ax-ay-1)
答案:(1)4q(1-p)3+2(p-1)2=2(1-p)2(2q-2pq+1)
(2)3m(x-y)-n(y-x)=(x-y)(3m+n)
(3)m(5ax+ay-1)-m(3ax-ay-1)=2am(x+y)
7. 計算
(1) 已知a+b=13,ab=40,求a2b+ab2的值;
(2) 1998+19982-19992
答案:(1)a2b+ab2=ab(a+b),當a+b=13時,原式=40×13=520
(2)1998+19982-19992=-1999
8. 比較2002×20032003與2003×20022002的大小。
解答:設2002=x
∵2002×20032003-2003×20022002=x•10001(x+1)-(x+1)•10001 x=0
∴2002×20032003=2003×20022002
§2.3運用公式法
教學目的和要求: 經歷通過整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的過程,發展學生的逆向思維和推理能力;運用公式法(直接用公式不超過兩次)分解因式(指數是正整數)
教學重點和難點:
重點:發展學生的逆向思維和推理能力
難點:能夠理解、歸納因式分解變形的特點,同時也可以充分感受到這種互逆變形的過程和數學知識的整體性.
快速反應:
1. 分解因式:①x2-y2= ; x2-4= ;②a2b2-2ab+1= ; = ;
2. 下列多項式中能用平方差公式分解因式的是( )
a.16a2-25b3 b.-16a2-25b2 c.16a2+25b2 d.-(16a2-25b2)
3. 下列各式不能用完全平方公式分解的是( )
a.x2+y2+2xy b.-x2+y2+2xy c.-x2-y2-2xy d.-x2-y2+2xy
4. 把下列各式分解因式:
(1)9a2m2-16b2n2; (2) ; (3)9(a+b)2-12(a+b)+4 (4)
自主學習:
1. (1)觀察多項式x2-25.9x-y2,它們有什麼共同特證?
(2)將它們分別寫成兩個因式的乘積,說明你的理由,並與同伴交流。
答案:(1)多項式的各項都能寫成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。
(2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).
2. 把乘法方式
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反過來,就得到 a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2
上面這個變化過程是分解因式嗎?說明你的理由。
答案:a2±2ab+b2=(a±b)2是分解因式。因為(a+b)2是因式的乘積的形式,(a-b)2也是因式的乘積的形式。
3. 把下列各式分解因式:
(1)25-16x2; (2) (3)9(m+n)2-(m-n)2; (4)2x3-8x;
(5)x2+14x+49; (6)(m+m)2-6(m+n)+9(7)3ax2+6axy+3ay2; (8)-x2-4y2+4xy
答案:(1)25-16x2=(5+4x)(5-4x) (2) =
(3)9(m+n)2-(m-n)2=4(2m+n)(m+2n)
(4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)
(5)x2+14x+49= x2+2×7x+72=(x+7)2
(6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2
(7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2
(8)-x2-4y2+4xy=-(x-2y)2
4. 把下列各式分解因式:
(1) ; (2)(a+b)2-1; (3)-(x+2)2+16(x-1)2;
(4)答案: (1) ; (2)(a+b)2-1=(a+b+1)(a+b-1)
(3)-(x+2)2+16(x-1)2=3(x-2)(5x-2);
(4)5. 把下列各式分解因式:
(1)m2-12m+36; (2)8a-4a2-4;
(3) ; (4) 。
答案:(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2;
(3) ;
(4)6. 求證(x+1)(x+2)(x+3)(x+4)+1是一個完全平方式。
證明一:原式=(x2+5x+4)(x2+5x+6)+1
=(x2+5x)2+10(x2+5x)+25
=(x2+5x+5)2 ∴原命題成立
證明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
令a=x2+5x+4,則x2+5x+6=a+2
原式=a(a+2)+1=(a+1)2
即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2
證明三:原式=(x2+5x+4)(x2+5x+6)+1
令 原式=(x2+5x+5-1)(x2+5x+5+1)+1
=(m-1)(m+1)+1=m2=(x2+5x+5)2
7. 已知a,b,c是△abc的三條邊,且滿足a2+b2+c2-ab-bc-ca=0試判斷△abc的形狀。
答案:∵a2+b2+c2-ab-bc-ca=0
∴2a2+2b2+2c2-2ab-2bc-2ac=0
即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0
∴(a-b) 2+(b-c) 2+(a-c) 2=0
∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0
∴a-b=0,b-c=0,a-c=0
∴a=b,b=c,a=c
∴這個三角形是等邊三角形.
8. 設x+2z=3y,試判斷x2-9y2+4z2+4xz的值是不是定值?
答案:當x+2z=3y時,x2-9y2+4z2+4xz的值為定值0。
6. 求證(x+1)(x+2)(x+3)(x+4)+1是一個完全平方式。
證明一:原式=(x2+5x+4)(x2+5x+6)+1
=(x2+5x)2+10(x2+5x)+25
=(x2+5x+5)2 ∴原命題成立
證明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
令a=x2+5x+4,則x2+5x+6=a+2
原式=a(a+2)+1=(a+1)2
即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2
證明三:原式=(x2+5x+4)(x2+5x+6)+1
令 原式=(x2+5x+5-1)(x2+5x+5+1)+1
=(m-1)(m+1)+1=m2=(x2+5x+5)2
1. 根據因式分解的概念,判斷下列各等式哪些是因式分解,哪些不是,為什麼?
(1)6abxy=2ab•3xy;
(2)(3)(2x-1)•2=4x-2
(4)4x2-4x+1=4x(x-1)+1.
2. 填空
(1)(2m+n)(2m-n)=4m2-n2此運算屬於 。
(2)x2-2x+1=(x-1)2此運算屬於 。
(3)配完全平方式 49x2+y2+ =( -y)2
a 1 a 3 a 5 a 7 15分解因式
a 1 a 7 a 3 a 5 15 a 8a 7 a 8a 15 15 a 8a 22 a 8a 105 15 a 8a 10 a 8a 12 a 8a 10 a 2 a 6 a 1 a 3 a 5 a 7 15 a 1 a 7 a 3 a 5 15 a 8a 7 a 8a 15 15 a 8a ...
11樂山 若m為正實數,且m 1 m 3,則m
手機使用者 解 由 m 1 m 3得,得m 2 3m 1 0,即 m 3 2 2 13 4,m1 3 13 2,m2 3 13 2,因為m為正實數,m 3 13 2,m 2 1 m 2 m 1 m m 1 m 3 3 13 2 1 3 13 2 3 13 故答案為 3 13 因為m 1 m 3,所以...
三臺電機M1M2M3按啟動按鈕SB1順序啟動時間間隔5秒按停
ws無名小卒 title 程式註釋9秒順序啟動 停機反序5秒停network 1 網路標題 網路註釋 ld i0.0 o q0.0 ldn m0.1 o q0.1 aldlps an q0.1 an m0.0 ton t37,50 lpp q0.0 network 2 ld t37 o q0.1 l...