指數函式和對數函式的運演算法則是什麼

時間 2021-09-05 17:08:25

1樓:匿名使用者

1.對於指數函式相加減,只好提取公因式,沒有類似指數冪的運演算法則.

2.對於對數函式相加減,則可以利用對數的運演算法則進行計算,但要注意定義域

2樓:匿名使用者

指數函式

指數函式的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函式的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

如圖所示為a的不同大小影響函式圖形的情況。

在函式y=a^x中可以看到:

(1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮,

同時a等於0一般也不考慮。

(2) 指數函式的值域為大於0的實數集合。

(3) 函式圖形都是下凹的。

(4) a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於y軸與x軸的正半軸的單調遞減函式的位置,趨向分別接近於y軸的正半軸與x軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函式總是在某一個方向上無限趨向於x軸,永不相交。

(7) 函式總是通過(0,1)這點

(8) 顯然指數函式無界。

(9) 指數函式既不是奇函式也不是偶函式。

(10)當兩個指數函式中的a互為倒數是,此函式影象是偶函式。

例1:下列函式在r上是增函式還是減函式?說明理由.

⑴y=4^x

因為4>1,所以y=4^x在r上是增函式;

⑵y=(1/4)^x

因為0<1/4<1,所以y=(1/4)^x在r上是減函式

1對數的概念

如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知:

①負數和零沒有對數;

②a>0且a≠1,n>0;

③loga1=0,logaa=1,alogan=n,logaab=b.

特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logen,簡記為lnn.

2對數式與指數式的互化

式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)

3對數的運算性質

如果a>0,a≠1,m>0,n>0,那麼

(1)loga(mn)=logam+logan.

(2)logamn=logam-logan.

(3)logamn=nlogam (n∈r).

急求指數函式和對數函式的運算公式 20

3樓:雨後彩虹

指數函式的運算公式:

指數函式的一般形式為

(a>0且≠1) (x∈r),要想使得x能夠取整個實數集合為定義域,則只有使得a>0且a≠1。

對數函式的運算公式:

換底公式

指系互換

倒數鏈式

通常我們將以10為底的對數叫常用對數(common logarithm),並把log10n記為lgn。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logen 記為in n。

擴充套件資料

同底的對數函式與指數函式互為反函式。

當a>0且a≠1時,ax=n。

x=㏒an。

關於y=x對稱。

對數函式的一般形式為 y=㏒ax,它實際上就是指數函式的反函式(圖象關於直線y=x對稱的兩函式互為反函式),可表示為x=ay。

因此指數函式裡對於a的規定(a>0且a≠1),右圖給出對於不同大小a所表示的函式圖形:關於x軸對稱、當a>1時,a越大,影象越靠近x軸、當0可以看到,對數函式的圖形只不過是指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

4樓:繆秀雲千酉

1對數的概念

如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知:

①負數和零沒有對數;

②a>0且a≠1,n>0;

③loga1=0,logaa=1,alogan=n,logaab=b.

特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718

28…)為底的對數叫做自然對數,記作logen,簡記為lnn.

2對數式與指數式的互化

式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)

3對數的運算性質

如果a>0,a≠1,m>0,n>0,那麼

(1)loga(mn)=logam+logan.

(2)logamn=logam-logan.

(3)logamn=nlogam

(n∈r).

問:①公式中為什麼要加條件a>0,a≠1,m>0,n>0?

②logaan=?

(n∈r)

③對數式與指數式的比較.(學生填表)

式子ab=nlogan=b名稱a—冪的底數

b—n—a—對數的底數

b—n—運算性

質am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈r)logamn=logam+logan

logamn=

logamn=(n∈r)

(a>0,a≠1,m>0,n>0)

難點疑點突破

對數定義中,為什麼要規定a>0,,且a≠1?

理由如下:

①若a<0,則n的某些值不存在,例如log-28?

②若a=0,則n≠0時b不存在;n=0時b不惟一,可以為任何正數?

③若a=1時,則n≠1時b不存在;n=1時b也不惟一,可以為任何正數?

為了避免上述各種情況,所以規定對數式的底是一個不等於1的正數?

解題方法技巧

1(1)將下列指數式寫成對數式:

①54=625;②2-6=164;③3x=27;④13m=5?73.

(2)將下列對數式寫成指數式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由對數定義:ab=n?logan=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解題方法

指數式與對數式的互化,必須並且只需緊緊抓住對數的定義:ab=n?logan=b.(2)①12-4=16.②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2根據下列條件分別求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)對數式化指數式,得:x=8-23=?

(2)log5x=20=1.

x=?(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x.

x=?解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解題技巧

①轉化的思想是一個重要的數學思想,對數式與指數式有著密切的關係,在解決有關問題時,經常進行著兩種形式的相互轉化.

②熟練應用公式:loga1=0,logaa=1,alogam=m,logaan=n.3

已知logax=4,logay=5,求a=〔x·3x-1y2〕12的值.

解析思路一,已知對數式的值,要求指數式的值,可將對數式轉化為指數式,再利用指數式的運算求值;

思路二,對指數式的兩邊取同底的對數,再利用對數式的運算求值?

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴a=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二對

5樓:瑩寶貼貼

y=a*x(a>0且不得1,x>0)

指數函式和對數函式的運算公式

6樓:務青芬御羅

對數的概念

如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知:

①負數和零沒有對數;

②a>0且a≠1,n>0;

③loga1=0,logaa=1,alogan=n,logaab=b.

特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718

28…)為底的對數叫做自然對數,記作logen,簡記為lnn.

2對數式與指數式的互化

式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)

3對數的運算性質

如果a>0,a≠1,m>0,n>0,那麼

(1)loga(mn)=logam+logan.

(2)logamn=logam-logan.

(3)logamn=nlogam

(n∈r).

問:①公式中為什麼要加條件a>0,a≠1,m>0,n>0?

②logaan=?

(n∈r)

③對數式與指數式的比較.(學生填表)

式子ab=nlogan=b名稱a—冪的底數

b—n—a—對數的底數

b—n—運算性

質am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈r)logamn=logam+logan

logamn=

logamn=(n∈r)

(a>0,a≠1,m>0,n>0)

難點疑點突破

對數定義中,為什麼要規定a>0,,且a≠1?

理由如下:

①若a<0,則n的某些值不存在,例如log-28

②若a=0,則n≠0時b不存在;n=0時b不惟一,可以為任何正數

③若a=1時,則n≠1時b不存在;n=1時b也不惟一,可以為任何正數

為了避免上述各種情況,所以規定對數式的底是一個不等於1的正數。

7樓:匿名使用者

建議去找本高中教材看一下,指數函式的運算公式和底數有關。

對數函式和指數函式的運算方法有哪些

指數 加減沒什麼好說的,和多項式是一樣的。乘除法 分別是指數的相加和相減,例如e x e 2x e x 2x e 3x,除法則為相減。對數 其實對數和指數是逆著來的,指數乘法是指數相加,對數加法則就是相乘,減法則為相除。例如ln x ln 2x ln x 2x ln 2x 2 1對數的概念 如果a ...

指數函式與對數函式交點問題,指數函式與對數函式交點問題

對於指數函式與對數函式的交點問題,教材以及很多資料的觀點是它們可能沒有交點 如圖一 可能有一個交點 如圖 二 三,圖二應該是公共點 可能有兩個交點 如圖四 這從指 對函式圖象上很容易發現其正確性 但是,實際上,指對函式可以有三個交點,這是我們始料不及的,很多資料上,甚至教材上都說過,指 對函式圖象可...

指出對數函式與指數函式的性質

流星雨 指數函式與對數函式的總結性質10 有獎勵寫回答共3個回答 矮小天使 ta獲得超過1304個贊 聊聊關注成為第2位粉絲 高考數學基礎知識彙總 第一部分 集合 1 含n個元素的集合的子集數為2 n,真子集數為2 n 1 非空真子集的數為2 n 2 2 注意 討論的時候不要遺忘了 的情況。3 第二...