x 7 ex dx上限下限0如圖3題,求解答過程

時間 2021-08-30 11:04:04

1樓:匿名使用者

1、ƒ(x,y) = ∫(0→2x - y) e^(- t²) dt

∂ƒ/∂x = ∂(2x - y)/∂x * e^[- (2x - y)²]

= 2e^[- (2x - y)²]

2、∫∫ e^(- x² - y²) dxdy

= ∫(0→2π) ∫(0→2) e^(- r²) rdrdθ

= θ |(0,2π) * (1/2)e^(- r²) |(0,2)

= 2π * (1/2)[e⁻⁴ - 1]

= 2(1/e⁴ - 1)π

3、兩個方法:

第一個方法。運用伽瑪函式γ(n) = ∫(0→∞) xⁿ⁻¹e^(- x) dx,γ(n) = (n - 1)!

∫(0→∞) x⁷e^(- x) dx

= ∫(0→∞) x⁸⁻¹e^(- x) dx

= γ(8)

= (8 - 1)!

= 7!

第二個方法:

用分部積分法速解法,適用於x^n * e^(kx),x^n * (lnx)^k

f ,i :x⁷ , e^(- x) ↘+

f' ,i(1):7x⁶ ,- e^(- x) ↘-

f'' ,i(2):42x⁵ , e^(- x) ↘+

f''',i(3):210x⁴ ,- e^(- x) ↘-

f⁴ ,i(4):840x³ , e^(- x) ↘+

f⁵ ,i(5):2520x²,- e^(- x) ↘-

f⁶ ,i(6):5040x , e^(- x) ↘+

f⁷ ,i(7):5040 ,- e^(- x) ↘-

交叉相乘:

∫ x⁷e^(- x) dx

= - x⁷e^(- x) - 7x⁶e^(- x) - 42x⁵e^(- x) - 210x⁴e^(- x) - 840x³e^(- x) - 2520x²e^(- x) - 5040xe^(- x) - 5040e^(- x) + c

= - (x⁷ + 7x⁶ + 42x⁵ + 210x⁴ + 840x³ + 2520x² + 5040x + 5040)e^(- x) + c

∫(0→+∞) x⁷e^(- x) dx

= 5040 = 7!

4、z = xln(xy)

∂z/∂x = ln(xy) * ∂x/∂x + x * ∂/∂x ln(xy)

= ln(xy) + x * 1/(xy) * y

= ln(xy) + 1

5、∫(- 2→2) [xcos⁴x + √(4 - x²)] dx

= 0 + 2∫(0→2) √(4 - x²)

= 2 * (1/4)π(2)²

= 2π

2樓:匿名使用者

方法1伽馬函式gamma(t)=∫(0,∞)x^(t-1)e^(-x)dx

這裡結果為gamma (8)=7!

方法2用laplace變換

=∫(0,∞)x^7e^(-x)dx=gamma (8)/(s+1),s→0

=7!方法3

分部積分+遞推

記i(n)=∫(0,∞)x^ne^(-x)dx=n∫(0,∞)x^(n-1)e^(-x)dx=ni(n-1)

則i(n)/i(n-1)=n

並且易得i(1)=1

那麼累乘有i(n)=n!*i(1)=n!

本題結果就為i(7)=7!

方法4含參積分略

設f x 定積分 lnt 1 t dt x0 ,上限x,下限1,求f x f

阿乘 lnx 2 2 先將f 1 x 的積分進行倒數換元,之後兩式相加,積分就求出來了。 f x lnx 1 x dx x 1 x lnm 1 m dm m 1 x 先 感受一下寫成積分變數m不影響結果 lns 1 s ds s 1 x 同樣不影響 下面要用這個結果的 f 1 x lnt 1 t d...

求定積分sinx dx 下限0,上限為2派)

不加絕對值,sin是 0.2 的周期函式,定積分值為0 加了絕對值就不是周期函式了。是2 sinx dx 積分割槽間為 0,即 2cosx 0,4 你可以畫圖看看,求定積分的幾何意義就是求被積函式與x軸所圍面積的代數和。這道題答案是4,沒有絕對值的話答案是0 海底忍者 這個圖嘛,就是把sinx在x軸...

比較定積分ln 1 x ,上限是1,下限是0和定積分x上下限

西域牛仔王 因為 01 ln 1 x dx 0 1 xdx 分部積分法 ln x 1 dx xln x 1 xd ln x 1 xln x 1 x x 1 dx xln x 1 1 1 x 1 dx xln x 1 dx 1 x 1 d x 1 xln x 1 x ln x 1 c代入上下限 ln2...