1樓:
這類問題一般都是證明在某點處偏導數存在,注意這時切記不能使用求導公式,以一元函式為例,這是因為用求導公式計算出來的導函式f'(x)往往含有間斷點,在間斷點x0處f'(x)無意義,但這不意味著f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x)
x≠0=0
x=0可以驗證在可去間斷點x=0處,導函式f'(x)無意義,但f'(0)=0存在。
正確方法是用偏導數的定義來驗證,偏導數是通過極限來定義的,按定義寫出某點(x0,y0)處偏導數的極限表示式(以對x的偏導數為例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趨於x0),然後用極限的相關知識來考察這個極限是否存在,這極限是否存在和該點處偏導數是否存在是一致的,因此證明偏導數存在的任務就轉化為證明極限存在,這可以通過以下兩種途徑解:1,根據極限運演算法則求出該極限,只要能求出極限的具體值,就等於證明了極限存在,而不用再費事去證明了;2,如果極限不容易求出,可以考慮用極限存在的準則去證明(例如夾逼準則)極限存在。(如果證明偏導數不存在則用極限的相關理論證明該極限不存在即可)
多說一點,在確定某點處偏導數存在的基礎上,往往還要討論偏導數在該點是否連續,這時才是用求導公式的時候,用求導公式計算出導函式f'x(x,y),這是一個關於x和y的二元函式,求(x0,y0)處二元函式f'x(x,y)的極限,如果這個極限存在且等於該點處的偏導數值,則偏導數連續,否則不連續。
2樓:天紫色角落
用定義證明啊,用定義能求出來值就說明存在
3樓:張雲蕭
對x的一階導數
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
對y的一階導數
r(y)=y*(x^2+y^2+z^2)^(-1/2)
對z的一階導數
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二階偏導函式
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
怎樣判斷偏導數是否存在
4樓:關鍵他是我孫子
用偏導數的定義來驗證:
1、偏導數是通過極限來定義的,按定義寫出某點(x0,y0)處偏導數的極限表示式。
2、(以對x的偏導數為例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趨於x0)。
3、然後用極限的相關知識來考察這個極限是否存在。
4、這極限是否存在和該點處偏導數是否存在是一致的,因此證明偏導數存在的任務就轉化為證明極限存在。
5樓:駱友
這類問題一般都是證明在某點處偏導數存在,注意這
時切記不能使用求導公式,以一元函式為例,這是因為用求導公式計算出來的導函式f'(x)往往含有間斷點,在間斷點x0處f'(x)無意義,但這不意味著f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x) x≠0
=0 x=0
可以驗證在可去間斷點x=0處,導函式f'(x)無意義,但f'(0)=0存在.
正確方法是用偏導數的定義來驗證,偏導數是通過極限來定義的,按定義寫出某點(x0,y0)處偏導數的極限表示式(以對x的偏導數為例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趨於x0),然後用極限的相關知識來考察這個極限是否存在,這極限是否存在和該點處偏導數是否存在是一致的,因此證明偏導數存在的任務就轉化為證明極限存在,這可以通過以下兩種途徑1,根據極限運演算法則求出該極限,只要能求出極限的具體值,就等於證明了極限存在,而不用再費事去證明了;2,如果極限不容易求出,可以考慮用極限存在的準則去證明(例如夾逼準則)極限存在.(如果證明偏導數不存在則用極限的相關理論證明該極限不存在即可)
多說一點,在確定某點處偏導數存在的基礎上,往往還要討論偏導數在該點是否連續,這時才是用求導公式的時候,用求導公式計算出導函式f'x(x,y),這是一個關於x和y的二元函式,求(x0,y0)處二元函式f'x(x,y)的極限,如果這個極限存在且等於該點處的偏導數值,則偏導數連續,否則不連續.
6樓:aa王哥
直接從定義驗證
可微偏導必存在
怎麼判斷偏導數是否存在
7樓:董茜沈**
用偏導數的定義
來驗證:
1、偏導數是通過極限來定義的,按定義寫出某點(x0,y0)處偏導數的極限表示式。
8樓:虔誠的圖騰
多元函式關於在x0處的偏導數存在的充要條件就是。
(t趨於0)lim [f(x0+t)-f(x0)]/t存在,對於其他的自變數也是一樣的道理。多元函式可偏導與連續是非必要亦非充分關係。
例如:z = (x+1) |y| 在(0,0)點,對x 的偏導數存在,fx'(0,0) = 0,
對y 的偏導數不存在,因為 fy'+(0,0) = 1,fy'-(0,0) = -1
此時,需要說明該函式「對x 的偏導數存在,對y 的偏導數不存在」.
拓展資料:
在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
在一元函式中,導數就是函式的變化率。對於二元函式研究它的「變化率」,由於自變數多了一個,情況就要複雜的多。
在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。
9樓:瞿冷農英博
這類問題一般都是證明在某點處偏導數存在,注意這時切記不能使用求導公式,以一元函式為例,這是因為用求導公式計算出來的導函式f'(x)往往含有間斷點,在間斷點x0處f'(x)無意義,但這不意味著f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x)
x≠0=0
x=0可以驗證在可去間斷點x=0處,導函式f'(x)無意義,但f'(0)=0存在.
正確方法是用偏導數的定義來驗證,偏導數是通過極限來定義的,按定義寫出某點(x0,y0)處偏導數的極限表示式(以對x的偏導數為例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趨於x0),然後用極限的相關知識來考察這個極限是否存在,這極限是否存在和該點處偏導數是否存在是一致的,因此證明偏導數存在的任務就轉化為證明極限存在,這可以通過以下兩種途徑1,根據極限運演算法則求出該極限,只要能求出極限的具體值,就等於證明了極限存在,而不用再費事去證明了;2,如果極限不容易求出,可以考慮用極限存在的準則去證明(例如夾逼準則)極限存在.(如果證明偏導數不存在則用極限的相關理論證明該極限不存在即可)
多說一點,在確定某點處偏導數存在的基礎上,往往還要討論偏導數在該點是否連續,這時才是用求導公式的時候,用求導公式計算出導函式f'x(x,y),這是一個關於x和y的二元函式,求(x0,y0)處二元函式f'x(x,y)的極限,如果這個極限存在且等於該點處的偏導數值,則偏導數連續,否則不連續.
10樓:匿名使用者
1,初等函式偏導數肯定都存在
2,判斷左右偏導數是否相等
3,用定義 判斷是否符合定義
多元函式關於在x0處的偏導數存在的充要條件就是(t趨於0)lim [f(x0+t)-f(x0)]/t存在,對於其他的自變數也是一樣的道理
多元函式可偏導與連續是非必要亦非充分關係
11樓:tpu薄膜專賣
連續是要在點(0,0)的一個鄰域內所有值都相等,當以直線y=kx靠近時,顯然與k值有關,所以不連續。對x的偏導存在只需在x軸方向上鄰域內的值相等就行,所以存在。對y同理。
求定義證明偏導數存在
12樓:匿名使用者
^按題來
目的要求還是要補源充原點的定義,f(0,0)=0化為極座標bai
f=(r^4* (sin(2θ)/2)^du2)/ r^3=1/4 *r (sin(2θ))^2
觀察函式影象zhi,結合定義,是不難證明函式的dao連續性(|f(x)|
高數 證明偏導數存在 10
13樓:匿名使用者
fx(0,0)=lim(x->0)[f(x,0)-f(0,0)]/x=lim(x->0)[0-0]/x
=0同理
fy(0,0)=0
所以偏導數存在。
偏導數怎麼證明不存在?能不能給一個詳細點的例題?
14樓:漂亮
導數和偏導沒有本bai質區別
du,都是當自變數的變化
zhi量趨於dao0時,函式值的變化量
與自版變數變化量比值的權極限(有過極限存在的話).
一元函式,一個y對應一個x,導數只有一個.連續函式必有原函式。
二元函式,一個z對應一個x和一個y,那就有兩個導數了,一個是z對x的導數,一個是z對y的導數,稱之為偏導.
求偏導時要注意,對一個變數求導,則視另一個變數為常數,只對改變數求導,從而將偏導的求解轉化成了一元函式的求導了
微積分中如何才能說明這個證明證明了偏導數的存在?即證明偏導數的存在需要某個證明得出什麼結果,才能說
15樓:匿名使用者
偏導數存在條件和導數存在條件一樣,只要按照各個方向[f(x+dx,y) - f(x,y)]/dx當dx趨於0時極限存在且相等即可
16樓:李雲峰
設y=kx+b經過這個點
如何證明二元函式的二階偏導數存在
17樓:匿名使用者
用一階導函式來證,去看看二階偏導數的定義。如果是區域性,也可以用極限形式來做驗證。
u x y z的偏導數詳細過程,求u x (y z 的偏導數
假面 具體回答如下 u x y z x y z 1 u y x y z lnx 1 z u z 1 z x y z lnx u z x y z lnx y z 2 u z y z 2 x y z lnxx方向的偏導 設有二元函式 z f x,y 點 x0,y0 是其定義域d 內一點。把 y 固定在 ...
考研數學,高等數學,偏導數是否存在
偏導數都算出來是0零了,還不存在?放心吧是題的問題。高等數學 偏導數在 0,0 處是否存在,是否連續 50 因為那兩個偏導數是在定義域內是連續的,所以偏導數連續 高等數學 判斷其在 0,0 處的偏導數和全微分是否存在 50 由來x y 2xy得 0 xy 自 x y x y 2 x y x y 當 ...
A對T怎麼求偏導得到S(非定位,A對B求偏導用英語怎麼說
da a t dt a v dv sdt pdv a t s 有幸碰到也是學物理的 雖然熱統忘記了 不過幸好偏導數還記得 a對b求偏導用英語怎麼說 你好!a對b求偏導 a partial guide to b 矩陣a轉置乘矩陣b乘矩陣a 如何對a求偏導 5 有個公式 j x u vu 我表示u的轉置...