1樓:月似當時
可微一定可導,可導不一定可微,各變數在此點的偏導數存在為其必要條件,其充要條件還要加上在此函式所表示的廣義面中在此點領域內不含有「洞」存在,可含有有限個斷點。
在一元函式中,可導與可微等價。
一元函式中可導與可微等價,它們與可積無關。 多元函式可微必可導,而反之不成立。
即:在一元函式裡,可導是可微的充分必要條件;
在多元函式裡,可導是可微的必要條件,可微是可導的充分條件。
2樓:無名村莊的大尾巴貓
是的,可微一定可導。但是可導不一定可微。
1、可導的充要條件:
左導數和右導數都存在並且相等。
2、可微:
(1)必要條件
若函式在某點可微分,則函式在該點必連續;
若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。
(2)充分條件
若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。
微分早在希臘時期,人類已經開始討論「無窮」、「極限」以及「無窮分割」等概念。這些都是微積分的中心思想;
雖然這些討論從現代的觀點看有很多漏洞,有時現代人甚至覺得這些討論的論證和結論都很荒謬,但無可否認,這些討論是人類發展微積分的第一步。
例如公元前五世紀,希臘的德謨克利特(democritus)提出原子論:他認為宇宙萬物是由極細的原子構成。在中國,《莊子.天下篇》中所言的「一尺之捶,日取其半,萬世不竭」,亦指零是無窮小量。
這些都是最早期人類對無窮、極限等概念的原始的描述。
其他關於無窮、極限的論述,還包括芝諾(zeno)幾個著名的悖論:
其中一個悖論說一個人永遠都追不上一隻烏龜,因為當那人追到烏龜的出發點時,烏龜已經向前爬行了一小段路,當他再追完這一小段,烏龜又已經再向前爬行了一小段路。芝諾說這樣一追一趕的永遠重覆下去,任何人都總追不上一隻最慢的烏龜。
當然,從現代的觀點看,芝諾說的實在荒謬不過;他混淆了「無限」和「無限可分」的概念。人追烏龜經過的那段路縱然無限可分,其長度卻是有限的;所以人仍然可以以有限的時間,走完這一段路。
然而這些荒謬的論述,開啟了人類對無窮、極限等概念的**,對後世發展微積分有深遠的歷史意味。
另外值得一提的是,希臘時代的阿基米德(archimedes)已經懂得用無窮分割的方法正確地計算一些面積,這跟現代積分的觀念已經很相似。
由此可見,在歷史上,積分觀念的形成比微分還要早。這跟課程上往往先討論微分再討論積分剛剛相反。
3樓:太虛夢魘
對於一元函式而言這兩個是一回事。但是多元函式可微一定可導(指偏導),可導就不一定可微了。
可微和可導有什麼區別?
4樓:我是一個麻瓜啊
一元函式中可導與可微等價,它們與可積無關。 多元函式可微必可導,而反之不成立。
即:在一元函式裡,可導是可微的充分必要條件;
在多元函式裡,可導是可微的必要條件,可微是可導的充分條件。
擴充套件資料:可微:設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。
可導:即設y=f(x)是一個單變數函式, 如果y在x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果一個函式在x0處可導,那麼它一定在x0處是連續函式
5樓:多看一眼永遠
一元函式中,可微和可導是等價的
多元函式中,某一點可微的條件是在所有方向上都可導
6樓:小想的小世界
準確地說,解析函式
是複變函式論中的概念。簡述如下:
如果複變函式在一點及其鄰域內可導(即可微),則稱函式在該點解析;
如果複變函式在(開)區域內可導(即可微),則稱函式在該(開)區域內解析。
注意,在一點可導與一點解析是截然不同的,但在一(開)區域內可導與該(開)區域內解析是一致的。
設y=f(x)是一個單變數函式, 如果y在x=x[0]處存在導數y'=f'(x),則稱y在x=x[0]處可導。
如果一個函式在x[0]處可導,那麼它一定在x[0]處是連續函式
如果一個函式在x[0]處連續,那麼它在x[0]處不一定可導
函式可導定義:
(1)若f(x)在x0處連續,則當a趨向於0時, [f(x+a)-f(x)]/a存在極限, 則稱f(x)在x0處可導.
(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導.
7樓:夢蓮雪瑩
可微是指一條曲線能被分割為很多無窮小小片段,並且沒有斷點可導是指不僅可微還是光滑
可微不一定可導,可導一定可微採納哦
可微函式的導數不一定連續,那什麼樣的函式可微且導數連續呢?處處連續函式不一定可導,
8樓:
初等函式一般都是連續可導而且導函式連續,除非在無定義的點不連續也不可導,如果無定義的點有極限的話,那麼這個不連續點是可去的,只需定義函式在該點的值等於這個極限,但也存在極少數函式連續而不可導,比如f(x)=|x|在x=0處,
所謂初等函式,基本上就是高中所學的函式,以及這些函式的初等運算(但要注意偶次方根的,被開方數必須大於等於0以及分母不等於0),大學裡面可能增加了雙曲函式,這些函式一般都是連續可導的,而且導數也連續,甚至可以多次求導,
但有些函式是人為構造的,那就說不清楚,譬如說好像有個黎曼函式,處處連續處處不可導,
函式可微,那麼偏導數一定存在,且連續嗎?
9樓:匿名使用者
函式可微則這個函式一定連續,但連續不一定可微.多元函式可微則偏導數一定存在,可微比偏導數存在要求強而偏導數連續可以退出可微,但反推不行。
若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。必要條件:若函式在某點可微,則函式在該點必連續,該函式在該點對x和y的偏導數必存在。
設函式z=f(x,y)在點p0(x0,y0)的某鄰域內有定義,對這個鄰域中的點p(x,y)=(x0+△x,y0+△y),若函式f在p0點處的增量△z可表示為:
△z=f(x0+△x,y+△y)-f(x0,y0)=a△x+b△y+o(ρ),其中a,b是僅與p0有關的常數,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是較ρ高階無窮小量,即當ρ趨於零是o(ρ)/ρ趨於零.則稱f在p0點可微。
可微的充要條件是曲面z=f(x,y)在點p(x0,y0,f(x0,y0))存在不平行於z軸的切平面π的充要條件是函式f在點p0(x0,y0)可微,這個切面的方程應為z-z=a(x-x0)+b(y-y0)。
10樓:賀津浦芮欣
可微則偏導數存在偏導數存在不一定可微只有偏導數存在且連續才能推出可微給你個
偏導可微
和函式連續的關係函式連續偏導數存在
這個2個推倒關係不可逆向推倒
逆向均不成立
11樓:匿名使用者
對於一元函式
函式連續 不一
定 可導 如y=|x|
可導 一定 連續 即連續是可導的必要不充分條件函式可導必然可微
可微必可導 即可導是可微的必要充分條件
對於多元函式
偏函式存在不能保證該函式連續 如 xy/(x^2+y^2) x^2+y^2不等於0
(不同於一元函式) z= f(x,y)=
0 x^2+y^2=0
函式連續當然不能推出偏導數存在 由一元函式就知道
12樓:匿名使用者
函式可微,那麼偏導數一定存在,且連續。
若函式在某點可微分,則函式在該點必連續;若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。
擴充套件資料偏導數的幾何意義:
二元函式z=f(x,y)在點(x0,y0)處的偏導數f'x(x0,y0)是曲面z=f(x,y)與平面y=y0的交線,即是平行於zox座標面的平面y=y0上的曲線z=f(x,y0)在點p(x0,y0,f(x0,y0))處的切線的斜率,也就是切線與該平面和xoy的交線。
沿x軸方向的夾角的正切,如果把切線平移到zox面上的話,夾角就是切線對x軸的傾斜角。偏導數的幾何意義:就是一條曲線上的斜率。
13樓:匿名使用者
饒噴油器自識結構式琳
為什麼偏導數存在不一定可微?
14樓:左岸居東
對於一元函式來說,可導和可微
是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.
1,偏導數存在且連續,則函式必可微!
2,可微必可導!
3,偏導存在與連續不存在任何關係
其幾何意義是:z=f(x,y)在點(x0,y0)的全微分在幾何上表示曲面在點(x0,y0,f(x0,y0))處切平面上點的豎座標的增量。
為什麼偏導數存在不一定可微?
15樓:左岸居東
對於一元函式來說
,可導和可微是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.
1,偏導數存在且連續,則函式必可微!
2,可微必可導!
3,偏導存在與連續不存在任何關係
其幾何意義是:z=f(x,y)在點(x0,y0)的全微分在幾何上表示曲面在點(x0,y0,f(x0,y0))處切平面上點的豎座標的增量。
函式可導一定可微呢麼?可微一定可導麼
一元函式,可微可導等價,多元函式,只有偏導數的概念,沒有可導這一說。 無名村莊的大尾巴貓 是的,可微一定可導。但是可導不一定可微。1 可導的充要條件 左導數和右導數都存在並且相等。2 可微 1 必要條件 若函式在某點可微分,則函式在該點必連續 若二元函式在某點可微分,則該函式在該點對x和y的偏導數必...
可導函式的導函式一定連續嗎,是連續不一定可導,可導一定連續嗎
你的這個問題過於籠統 既沒有說定義域,也沒有限制函式範圍!不過你的意思應該是 可導函式的導函式在原函式的可導定義域內一定連續嗎?答案是肯定的。一樓的回答肯定是錯誤的,因為x 0不在函式定義域內二樓同樣錯誤,斜率無窮大的點不存在,因為斜率垂直x軸的那個點就是他所說的斜率無窮大的點,這點明顯不可取即不在...
到底是「可導一定連續」還是「可導不一定連續」
可導一定連續,連續不一定可導 證明 可導一定連續 設y f x 在x0處可導,f x0 a由可導的充分必要條件有 f x f x0 a x x0 o x x0 當x x0時,f x f x0 o x x0 再由定理 當x x0時,f x a的充分必要條件是f x a a a是x x0時的無窮小 得,...