高中數學題已知0a求證 2sin2acot a 2並求出使等號成立的a的值

時間 2021-08-30 10:24:05

1樓:匿名使用者

利用萬能公式

sinα=[2tan(α/2)]/

cosα=[1-tan(α/2)^2]/

0

那麼0

tan(a/2)∈(0,+∞)

令tan(a/2)=k

不等式就是

4sinacosa=4×2k/(1+k²)*(1-k²)/(1+k²)≤1/k

變換為8k²(1-k²)≤(1+k²)²

繼續變換

9k^4-6k²+1≥0

也就是(3k²-1)²≥0

顯然式子成立

命題得證

僅當3k²=1 也就是k²=1/3的時候等式成立這時候cosa=(1-1/3)/(1+1/3)=1/2a是60度

2樓:匿名使用者

由半形公式得cot(a/2)=sina/(1-cosa)則2sin2a=4sinacosa=sina*4cosa則只需證4cosa(1-cosa)<=1

右式-左式=1-4cosa+4(cosa)^2=(1-2cosa)^2

>=0故命題得證

當取等號時1-2cosa=0

cosa=1/2

a=π/3=60°

3樓:匿名使用者

cot(a/2)-2sin2a = (1+cosa)/sina - 4sinacosa = (1+cosa - 4 cosa sina ^2 )/ sina

sina>0, cosa [ 1-4 sina ^2 ] = 4cosa ^3 - 3cosa = cos(3a)

cot(a/2)-2sin2a = [ 1+ cos(3a)] / sina >=0

即證 2sin2a<=cot(a/2)

cos(3a)=-1 => 3a = π,=> a = π/3

高中數學三角函式證明題 已知0<α<θ<β<π/2,α+β=π/2; 求證:sin(α+θ)cos

4樓:玉杵搗藥

此題較簡單,直接使用和差角公式即可。

5樓:路人__黎

原式=sin[(α+θ)+(β-θ)]

=sin(α+θ+β-θ)

=sin(α+β)

=sin(π/2)=1

6樓:訣別與再遇

原式=sin(α+θ+β-θ)

=sin(α+β)

∵α+β=π/2

∴sin(α+β)=1

數學題已知a屬於(0,π/2),求證sina<a<tana

7樓:

利用導數做。,為了比較sina和a,可以設f(x)=a-sina

求f(x)的導數,為1-cosa,這個導數明顯是大於0的吧。然後f(0)=0,所以a>sina

tana應該是用一樣的方法

8樓:匿名使用者

利用數形結合的 三角函式線學過沒有 在座標系中畫一個單位圓 設單位圓與x軸正半軸交於a ,在第一象限取個角 以原點為頂點 x軸正向為其 一邊 另一邊與單位圓的交點 設為p 過p作x軸的垂線 交點為m 則有向線段mp就是它的 正弦線 ,角所夾的那段圓弧就是角 ,過a作圓的切線與角的終邊交於t 則有向線段at就是它的正切線 ,這樣就可以得到他們的大小了 希望對你有所啟發

9樓:播我名字是曹操

在單位圓中利用三角函式線及面積證明。三角形opa的面積《扇形opa的面積《三角形ota的面積。他們的面積表示式分別是1/2*oa*mp、1/2*oa*弧pa、1/2*oa*at

所以可得oa《弧pa

10樓:書劍風韻

做一個半徑為1的圓,根據高中學的sin tan的幾何意義 就可知結論正確

高中數學題急求解,已知a0,b0,求證a a a b

銀星 a b b a a b a a b b ab a b b a ab a a a b b b b a ab a a b b a b ab a b a b ab a 0,b 0 a b與 a b同正或同負 即 a b a b 0,ab 0 a b b a a b 0 即a b b a a b 20...

高中數學題,高中數學題

5個。x f x 0的情況 x 0 f x 2,3,4 此時x f x 0 為偶數 有3種情況。x f x 2,4的情況 x 1 f x 2,4 此時x f x 2,4 為偶數 有2種情況。摘要。請講。諮詢記錄 於2023 01 04 高中數學題。請講。麻煩儘快發一下答案謝謝 麻煩儘快,等一會能購買...

幾道高中數學題,一道高中數學題!

暖眸敏 1.2b a c是a,b,c成等差數列的充要條件若2b a c 則b a c b a,b,c成等差數列若a,b,c成等差數列,則b a c b 2b a c2z x yi x,y r 的共軛複數為z x yi對應的點分別為z x,y z x,y 關於x軸 實軸 對稱答b3 1 i 2010 ...