1樓:你爸嶓
a^2+1/(a-b)b
=a^2-4ab+4b^2+ 4ab-4b^2+1/(a-b)b=a^2-4ab+4b^2+ 4(a-b)b+1/(a-b)b=a^2+4b^2-4ab+ 4(a-b)b+1/(a-b)b>=2倍根號(a^2 *4b^2)-4ab + 2倍根號【4(a-b)b*1/(a-b)b】
=4ab-4ab +4
=4當且僅當a^2=4b^2 且 4(a-b)b=1/(a-b)b時取等號
此時a=2b且 (a-b)b=1/2
得a=根號2,b=二分之根號2
打字不易,如滿意,望採納。
2樓:高中數學莊稼地
解:∵a>b>0,∴a-b>0,b²+(a-b)²≥2b(a-b)b²+(a-b)²+2b(a-b)≥4b(a-b)[b+(a-b)]²≥4b(a-b)
a²/4≥b(a-b)
∴a²+1/b(a-b)≥a²+4/a²
當且僅當b=a-b,a²=4/a²時,上式相等,此時a=√2,b=√2/2
∴a²+1/b(a-b)≥4
㊣㊪最小值4
已知a>0,b>0,a+b=1,則1a2+1b2的最小值為______
3樓:斑駁
∵a>0,b>0,a+b=1,∴b=1-a.∴1a+1b=1a
+1(1?a)
=f(a).
f′(a)=?2a-2
(a?1)
=?2(2a?1)(3a
?3a+1)
a(a?1)
,當0<a<1
2時,f′(a)>0,此時函式f(a)單調遞減;當12<a<1時,f′(a)<0,此時函式f(a)單調遞增.∴當a=1
2=b時,f(a)取得最小值,f(1
2)=8.
故答案為:8.
4樓:路媚閻玲然
∵a>0,b>0,a+b=1,
∴1a2+1b2
=(a+b)2a2+(a+b)2b2
=1+2ba+(ba)2+1+2ab+(ab)2=2+2(ab+ba)+(ab)2+(ba)2=(ab+ba)2+2(ab+ba).
∵ab+ba≥2,
∴(ab+ba)2≥4,
2(ab+ba)≥4.
∴(ab+ba)2+2(ab+ba)≥8.當且僅當a=b=12時取等號.
即1a2+1b2≥8.
故答案為:8
設ab0,證明 a b aln a ba b b(要過程)
設a b x 就變成1 1 x1 第一個 號 令f x lnx 1 x 1 求導1 x 1 x 2 1 x 1 1 x 0所以f x 遞增 最小值是f 1 0 所以f x 0 第一個 成立 第二個 號 令f x x 1 lnx 求導1 1 x 0 遞增 f 1 0 所以f x 0 第二個 成立 微分...
b 2 1 ab0 經過點M 1,3 2,設直線L y kx m k小於等於0 5)
仁新 先求橢圓方程 將點m 1,3 2 代入橢圓 x a y b 1,得1 a 9 4b 1.由e c a 1 2,即c a 1 4,即 a b a 1 4,得出3a 4b 聯立上邊兩方程,解得 a 4,b 3.橢圓方程為x 4 y 3 1.因aobp是平行四邊形,所以對角線互相平分,即ab,po的...
線性代數 AB 0為什麼不能推出A 0或B
請問,你是怎麼推出來的?ab o,則a,b行列式的值是都為0還是隻有 則 若ab 0,則 a b ab o 0,所以 a 0或 b 0,即兩個行列式至少有一個為專0,但不保證都為0。屬。如果ab 0且a與b都是非零矩陣,則兩個行列式都為0。反證法,若 a 0,則a可逆,在ab 0兩邊左乘a的逆矩陣可...