1樓:哆啦愛夢
1,資料分析可以分為廣義的資料分析和狹義的資料分析,廣義的資料分析就包括狹義的資料分析和資料探勘,我們常說的資料分析就是指狹義的資料分析。
2,資料分析(狹義):
定義:簡單來說,資料分析就是對資料進行分析。專業的說法,資料分析是指根據分析目的,用適當的統計分析方法及工具,對收集來的資料進行處理與分析,提取有價值的資訊,發揮資料的作用。
作用:它主要實現三大作用:現狀分析、原因分析、**分析(定量)。資料分析的目標明確,先做假設,然後通過資料分析來驗證假設是否正確,從而得到相應的結論。
方法:主要採用對比分析、分組分析、交叉分析、迴歸分析等常用分析方法;
結果:資料分析一般都是得到一個指標統計量結果,如總和、平均值等,這些指標資料都需要與業務結合進行解讀,才能發揮出資料的價值與作用;
網際網路是個神奇的大網,大資料開發和軟體定製也是一種模式,這裡提供最詳細的**,如果你真的想做,可以來這裡,這個手技的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者瞭解這方面的內容,如果只是湊熱鬧的話,就不要來了。
3,資料探勘:
定義:資料探勘是指從大量的資料中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的資訊和知識的過程。
作用:資料探勘主要側重解決四類問題:分類、聚類、關聯和**(定量、定性),資料探勘的重點在尋找未知的模式與規律;如我們常說的資料探勘案例:
啤酒與尿布、安全套與巧克力等,這就是事先未知的,但又是非常有價值的資訊;
方法:主要採用決策樹、神經網路、關聯規則、聚類分析等統計學、人工智慧、機器學習等方法進行挖掘;
結果:輸出模型或規則,並且可相應得到模型得分或標籤,模型得分如流失概率值、總和得分、相似度、**值等,標籤如高中低價值使用者、流失與非流失、信用優良中差等;
4,綜合起來,資料分析(狹義)與資料探勘的本質都是一樣的,都是從資料裡面發現關於業務的知識(有價值的資訊),從而幫助業務運營、改進產品以及幫助企業做更好的決策。所以資料分析(狹義)與資料探勘構成廣義的資料分析。
2樓:cda資料分析師
1.資料探勘
資料探勘是指從大量的資料中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的資訊和知識的過程。資料探勘主要側重解決四類問題:分類、聚類、關聯和**,就是定量、定性,資料探勘的重點在尋找未知的模式與規律。
輸出模型或規則,並且可相應得到模型得分或標籤,模型得分如流失概率值、總和得分、相似度、**值等,標籤如高中低價值使用者、流失與非流失、信用優良中差等。主要採用決策樹、神經網路、關聯規則、聚類分析等統計學、人工智慧、機器學習等方法進行挖掘。綜合起來,資料分析(狹義)與資料探勘的本質都是一樣的,都是從資料裡面發現關於業務的知識(有價值的資訊),從而幫助業務運營、改進產品以及幫助企業做更好的決策,所以資料分析(狹義)與資料探勘構成廣義的資料分析。
這些內容與資料分析都是不一樣的。
2.資料分析
其實我們可以這樣說,資料分析是對資料的一種操作手段,或者演算法。目標是針對先驗的約束,對資料進行整理、篩選、加工,由此得到資訊。資料探勘,是對資料分析手段後的資訊,進行價值化的分析。
而資料分析和資料探勘,又是甚至是遞迴的。就是資料分析的結果是資訊,這些資訊作為資料,由資料去挖掘。而資料探勘,又使用了資料分析的手段,周而復始。
由此可見,資料分析與資料探勘的區別還是很明顯的。
而兩者的具體區別在於:
(其實資料分析的範圍廣,包含了資料探勘,在這裡區別主要是指統計分析)
資料量上:資料分析的資料量可能並不大,而資料探勘的資料量極大。
約束上:資料分析是從一個假設出發,需要自行建立方程或模型來與假設吻合,而資料探勘不需要假設,可以自動建立方程。
物件上:資料分析往往是針對數字化的資料,而資料探勘能夠採用不同型別的資料,比如聲音,文字等。
結果上:資料分析對結果進行解釋,呈現出有效資訊,資料探勘的結果不容易解釋,對資訊進行價值評估,著眼於**未來,並提出決策性建議。
資料分析是把資料變成資訊的工具,資料探勘是把資訊變成認知的工具,如果我們想要從資料中提取一定的規律(即認知)往往需要資料分析和資料探勘結合使用。
舉個例子說明:你揣著50元去菜市場買菜,對於琳琅滿目的雞鴨魚豬肉以及各類蔬菜,想葷素搭配,你逐一詢問**,不斷進行統計分析,能各自買到多少肉,多少菜,大概能吃多久,心裡得出一組資訊,這就是資料分析。而關係到你做出選擇的時候就需要對這些資訊進行價值評估,根據自己的偏好,營養價值,科學的搭配,用餐時間計劃,最有價效比的組合等等,對這些資訊進行價值化分析,最終確定一個購買方案,這就是資料探勘。
資料分析與資料探勘的結合最終才能落地,將資料的有用性發揮到極致。
3樓:加米穀大資料科技
資料分析和資料探勘,兩者的工作內容有著不小的區別。
對於一個資料分析師來說,最重要的並不是程式設計技能,而是邏輯分析能力、業務理解能力、報告展示能力等。資料探勘工程師一般情況下不會接觸太多的業務。
資料分析師:基於業務,通過資料分析手段發現和分析業務問題,為決策作支援。
資料探勘工程師:偏技術,通過建立模型、演算法、**等提供一些通用的解決方案,當然也有針對某業務的。
兩者的職業路線也非常不同,資料分析師之後可以做業務、可以轉產品、可以做管理;而資料探勘工程師一般會在技術領域垂直、深入地探索,之後可能會做技術管理,也有一輩子做技術的。
4樓:小然
1.一個主要做整理工作,一個主要做建模工作。
2. 在統一的統計指標下,通過不同的結構型思維,分析資料得出結論。
大資料、資料分析和資料探勘的區別是什麼?
5樓:時時時擦
區別:大資料
是網際網路的海量資料探勘,而資料探勘更多是針對內部企業行業小眾化的資料探勘,資料分析就是進行做出針對性的分析和診斷,大資料需要分析的是趨勢和發展,資料探勘主要發現的是問題和診斷。
釋義:大資料:指無法在可承受的時間範圍內用常規軟體工具進行捕捉、管理和處理的資料集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的資訊資產;在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大資料時代》 中大資料指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有資料進行分析處理。
大資料的5v特點(ibm提出):volume(大量)、velocity(高速)、variety(多樣)、value(價值)veracity(真實性) 。
資料分析:是指用適當的統計分析方法對收集來的大量資料進行分析,提取有用資訊和形成結論而對資料加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支援過程。
在實用中,資料分析可幫助人們作出判斷,以便採取適當行動。
資料分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得資料分析得以推廣。資料分析是數學與電腦科學相結合的產物。
6樓:cda資料分析師
1、大資料:指無法在可承受的時間範圍內用常規軟體工具進行捕捉、管理和處理的資料集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的資訊資產。
大資料的5v特點(ibm提出):volume(大量)、velocity(高速)、variety(多樣)、value(價值)veracity(真實性)
2、資料分析:是指用適當的統計分析方法對收集來的大量資料進行分析,提取有用資訊和形成結論而對資料加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支援過程。
在實用中,資料分析可幫助人們作出判斷,以便採取適當行動。
3、資料探勘:涉及到很多的演算法,源於機器學習的神經網路,決策樹,也有基於統計學習理論的支援向量機,分類迴歸樹,和關聯分析的諸多演算法。資料探勘的定義是從海量資料中找到有意義的模式或知識。
海闊憑魚躍,天高任鳥飛。對於進入這個行業的同學而言,你可以選擇讀研後再進入這個行業,也可以先就業,用你的工作經驗彌補你的學歷不足。大資料、資料分析或資料探勘是實踐性很強的學科,從實際工作中獲取的知識和能力是你在學校裡面無法學習到的,企業最終也是看重你的實際工作能力。
7樓:只愛小
大資料概念:大資料
是近兩年提出來的,有三個重要的特徵:資料量大,結構複雜,資料更新速度很快。由於web技術的發展,web使用者產生的資料自動儲存、感測器也在不斷收集資料,以及移動網際網路的發展,資料自動收集、儲存的速度在加快,全世界的資料量在不斷膨脹,資料的儲存和計算超出了單個計算機(小型機和大型機)的能力,這給資料探勘技術的實施提出了挑戰(一般而言,資料探勘的實施基於一臺小型機或大型機,也可以進行平行計算)。
資料探勘概念: 資料探勘基於資料庫理論,機器學習,人工智慧,現代統計學的迅速發展的交叉學科,在很多領域中都有應用。涉及到很多的演算法,源於機器學習的神經網路,決策樹,也有基於統計學習理論的支援向量機,分類迴歸樹,和關聯分析的諸多演算法。
資料探勘的定義是從海量資料中找到有意義的模式或知識。
大資料需要對映為小的單元進行計算,再對所有的結果進行整合,就是所謂的map-reduce演算法框架。在單個計算機上進行的計算仍然需要採用一些資料探勘技術,區別是原先的一些資料探勘技術不一定能方便地嵌入到 map-reduce 框架中,有些演算法需要調整。
大資料和資料探勘的相似處或者關聯在於: 資料探勘的未來不再是針對少量或是樣本化,隨機化的精準資料,而是海量,混雜的大資料,資料分析是指用適當的統計分析方法對收集來的大量資料進行分析,提取有用資訊和形成結論而對資料加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支援過程。
在實用中,資料分析可幫助人們作出判斷。
拓展資料:
大資料(big data),指無法在一定時間範圍內用常規軟體工具進行捕捉、管理和處理的資料集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的資訊資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大資料時代》 中大資料指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有資料進行分析處理。大資料的5v特點(ibm提出):volume(大量)、velocity(高速)、variety(多樣)、value(低價值密度)、veracity(真實性)。
資料分析師和資料探勘工程師的區別是什麼
cda資料分析師 1 資料分析 的重點是觀察資料,而 資料探勘 的重點是從資料中發現 知識規則 2 資料分析 得出的結論是人的智慧活動結果,而 資料探勘 得出的結論是機器從學習集 或訓練集 樣本集 發現的知識規則。3 資料分析 得出結論的運用是人的智力活動,而 資料探勘 發現的知識規則,可以直接應用...
大資料,資料分析,資料統計和資料探勘的區別
資料分析 一般要分析的目標比較明確,分析條件也比較清楚。資料探勘 目標不是很清晰,要依靠挖掘演算法來找出隱藏在大量資料中的規則 模式 規律等。 海同職座標 資料分析與資料探勘的目的不一樣,資料分析是有明確的分析群體,就是對群體進行各個維度的拆 分 組合,來找到問題的所在,而資料探勘的目標群體是不確定...
如何對超市的資料分析,需要對那些方面和資料分析
學習新零售小助手 開超市一定要做門店銷售資料分析,通過銷售資料分析,為改善門店經營提供依據。 呂秀才 超市一般是使用關聯資料探勘 也就是要收集每個人購物的商品資料。通過這個分析,可以發現哪些商品經常會被一起購買,然後就可以進行相應的 或者貨品擺放調整 啥叫親情 一 從銷量入手 1 與去年同期相比查詢...