利用導數的方法求1 2x 3x 2 4x 3 nx n 1 (x不等於1,n為正整數)

時間 2025-04-25 14:45:41

1樓:始玄郯語山

令。g(x)=1+2x+3x^2+4x^3+..nx^(n-1)x不等於1,n為正渣漏告整數)

f(x)=x+x^2+x^3+x^4+..x^nx不等於1,n為正整數)

g(x)=f』(x)

而f(x)可用等比求和來做。

f(x)=(x-x^(n+1))/1-x)x不等於如明1,n為正整數)

f'搜派(x)=[1-(n+1)x^n)(1-x)-(x-x^(n+1))*1)]/1-x)^2

1-(n+1)x^n)(1-x)+(x-x^(n+1))]1-x)^2

剩下的自己化簡吧,應該可以化簡的。

關鍵是建構函式。

2樓:樓皓揚秋白

這種可化為等比數列鍵局簡的問題要分類討論:

1)x=0時,sn=1

2)x=1時,sn=1+2+……n=n(n+1)/23)x≠1且≠0時,sn=1+2x+3x^2+4x^3+……nx^(n-1)

兩邊都乘以x得。

xsn=x+2x^2+3x^3+……n-1)x^(n-1)+nx^n1)-(2)得。

1-x)sn=1+x+x^2+x^3+……x^(n-1)-nx^n1(1-x^n)/(1-x)

nx^n所以sn=[(1-x^n)/(1-x)^2]-[nx^n/(1-x)]

1-x^n)-(1-x)nx^n]/(1-x)^2以後所有形如這類不是臘坦很標準的等比數列都可以用這種「錯位相乘稿褲再想減法」。

x(x-1)(x-2)(x-3)....(x-n)導數怎麼求啊

3樓:教育小百科是我

y=x(x-1)(x-2)(x-3)……x-n)n階導數為(n+1)!x-n(n+1)/2

觀察y=x(x-1)(x-2)(x-3)……x-n)的最高次數項為x^(n+1)

求n階導後成為(n+1)!x

第二高次數項為-(1+2+3+……n)x^n

求n階導後取係數成為-n(n+1)/2

所以y的n階導數為(n+1)!x-n(n+1)/2

y=x(x-1)(x-2)(x-3)……x-n)n階導數為(n+1)!x-n(n+1)/2

求導的意義:

乙個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

4樓:網友

求它在x=0處的導數是容易的, f'(0)=lim[f(x)-f(0)]/x=limx(x-1)(x-2)(x-3)..x-n)/x=lim(x-1)(x-2)(x-3)..x-n)=(-1)(-2)..

n)=(-1)^n×n!

5樓:網友

與(uv)'=u'v+uv' 類似啊,只是n+1項乘積,最後就是n+1項的和,其中每項是對乙個因子求導其餘不變。結果表述見圖。

6樓:

求解過程好做,結果不好表達。

y=lg(1-2x)的導數?求過程

7樓:小茗姐姐

方法如下,請作參考:

8樓:體育wo最愛

利用對數的換底公式將其轉換為自然對數,在進行求解!

9樓:帳號已登出

因為lg(1-2x)=ln(1-2x)/ln10,而ln10是乙個常數,所以y'=1/ln10*(l

n'(1-2x))

1/ln10)*1/(1-2x)*(1-2x)'

1/(ln10*(1-2x))*2)

2/(ln10*(1-2x))

10樓:匿名使用者

乙個笑就擊敗了一輩子,一滴淚就還清了乙個人。一人花開,一人花落,這些年從頭到尾,無人問詢。

用導數的方法求和 1+2x+3x^2+...+nx^n-1(x≠1)求詳細解答過程

11樓:張三**

設y=x+x^2+x^3+……nx^(n)那麼y=x(x^n-1)/(x-1)

那麼y'=1+2x+3x^2+……nx^n-1所以所求的和就是將x(x^n-1)/(x-1)求導。

即為。(n+1)x^n-1]/(x-1)-x(x^n-1)/(x-1)^2

ps:詳細過程也沒擾閉有多詳細。因為求x(x^n-1)/(x-1)的談李塵導數如果全部寫上去的話就變詳細了,你還是自含禪己算吧。

(x+1)(2x+1)(3x+1)的導數

12樓:

我們可以使用乘法法則和鏈式法則來求導。首先,應用乘法法則原始函式:$(x+1)(2x+1)(3x+1) =6x^3 + 11x^2 + 6x + 1$然後,使用鏈式法則來求導:

frac(x+1)(2x+1)(3x+1) =2x+1)(3x+1)\frac(x+1) +x+1)(3x+1)\frac(2x+1) +x+1)(2x+1)\frac(3x+1)$$frac(x+1)(2x+1)(3x+1) =2x+1)(3x+1)(1) +x+1)(3x+1)(2) +x+1)(2x+1)(3)$$frac(x+1)(2x+1)(3x+1) =12x^2 + 17x + 6$

x+1)(2x+1)(3x+1)的導數。

我們可備宴虧以使用祥緩乘法法則和鏈式法則來求導。首先,應用乘法法則原始函式:$(x+1)(2x+1)(3x+1) =6x^3 + 11x^2 + 6x + 1$然後仿神,使用鏈式法則來求導:

frac(x+1)(2x+1)(3x+1) =2x+1)(3x+1)\frac(x+1) +x+1)(3x+1)\frac(2x+1) +x+1)(2x+1)\frac(3x+1)$$frac(x+1)(2x+1)(3x+1) =2x+1)(3x+1)(1) +x+1)(3x+1)(2) +x+1)(2x+1)(3)$$frac(x+1)(2x+1)(3x+1) =12x^2 + 17x + 6$

因此,$(x+1)(2x+1)(3x+1)$ 的導數為 $12x^2 + 17x + 6$。

答案是41x+6嗎。

親,導數為 $12x^2 + 17x + 6$。

(1)求函式y=x+3x2+3的導數?

13樓:黑科技

解題思路:(1)根據導數的除法運演算法則即可求解2)根據冪函式的求導法則和三角函式的求導法則即可求解1)y′=x+3)′•x2+3)−(x+3)•(x2+3)′x2+3)2=

x2+3)−(x+3)•2x

x2+3)2=

x2−6x+3

x2+3)2

2)∵f(x)=x3+4cosx−sin

f'(x)=3x2-4sinxf′(

4−4sin

8,(1)求函式 y= x+3 x 2 +3 的導數2)已知 f(x)= x 3 +4cosx−sin π 2 ,求f'(x)及 f′( 2 )

y=x(x+1)(x+2)(x+3)...(x+n)的導數求法,(詳細)

14樓:華源網路

記y(x)=xg(x),其中g(x)=(x+1)(x+2)(x+3)..x+n),有g(0)=n!

求導y'(x)=g(x)+xg'咐銀(x)

則y'此簡姿森絕(0)=g(0)=n!

求下列函式的導數1.y=(3x2-4x)(2x+1)

15樓:亞浩科技

y'=(3x2-4x)'(2x+1)+(3x2-4x)*(2x+1)'=6x-4)*(2x+1)+(3x2-4x)*2=18x^2-10x-4

就是先對第乙個括號求導*第二個括號輪襪+先對第二個括號求導*第乙個括號。

另一種滲逗方法是展叢桐賣開該函式再求導。

y=6x^3-5x^2-4x

y'=18x^2-10x-4

e的 x次方的導數是多少?求e的 x次方導數

求e的 x次方導數 方法如下,請作參考 e的負x次方的導數為 e x 計算方法 e x e x x e x 1 e x 本題中可以把 x看作u,即 e u e u u e x x e x 1 e x e的 x次方的導數是什麼?e x 的導數是 e x f x e x f x e x e x 把x 1...

求函式y x 1 x 2x 100 x 100 的導數

司其玄 其實,這個很簡單的,你上面這位仁兄給你的方法是非常高階的。有一種比較簡單的方法,及時對等式右邊的部分分開求導,先對 x 1 求導把 x 2 x 100 看做整體,再把 x 1 x 3 x 100 看做整體對 x 2 求導,依次進行下去,就將結果相加,就有y x 2 x 100 x 1 x 3...

y3x 2x 3 1 2的導數誰給個詳細過程急求

y是 3x 和 x 1 2 的乘積,先按乘積求導 y 3x x 1 2 3x x 1 2 6x x 1 3x x 1 2 x 1 2 是複合函式,按複合函式求導 x 1 2 2 x 1 3 x 1 6x x 1 3 所以y 6x x 1 3x 6x x 1 3 6x x 1 18x 4 x 1 3 ...