1樓:匿名使用者
6)首先求齊次方程的解,特徵方程為:r²+1=0,所以特徵根為±i。所以齊次方程的通解為:dcosx+esinx(其中d、e為任意常數)
再求一個特解,不妨設特解y*=ksin(2x),k為待定常數,代入原方程有:
-4ksin(2x)+ksin(2x)=-sin(2x)解得:k=1/3
所以原方程的通解為:dcosx+esinx+(1/3)sin(2x)代入初始條件:
y(π)=-d+0+0=1
y`(π)=0-e+(2/3)=1
解得:d=-1,e=-1/3
方程的解為:(1/3)sin(2x)-cosx-(1/3)sinx4.觀察已知方程,當x=0時積分上下限相等,故積分值為0。所以y(0)=1。
已知方程兩邊對x求導,得到:
y`=-(1/3)………………記e的-x次冪為exp(-x)整理得到二階線性微分方程:
y``+3y`+2y=6x[exp(-x)]對應初始條件為:y(0)=1,y`(0)=0同理解方程就可以了,篇幅有限,這部分留給題主自己解決啦!
2樓:匿名使用者
(6) 特徵方程 r^2+1 = 0, 特徵根 r = ±i
特解可設為 y = acos2x+bsin2x, 代入微分方程,可得 a =0, b = -1/3.
則特解為 y = -(1/3)sin2x
微分方程的通解為 y = c1cosx + c2sinx - (1/3)sin2x
y(π) = 1, 代入, 得 c1 = -1
y' = -c1sinx + c2cosx - (2/3)cos2x,
y'(π) = 1, 代入, 得 c2 = -5/3,
所求特解為 y = -cosx - (5/3) c2sinx - (1/3)sin2x
4. 等式兩邊對 x 求導得
y' = (1/3)[y''(x) +2y(x)-6xe^(-x)].
即 y'' - 3y'+ 2y = 6xe^(-x)
特徵方程 r^2-3r+2 = 0, 特徵根 r = 1, 2
特解可設為 y = (ax+b)e(-x) , 代入微分方程,可得 a =1, b = 5/6.
則特解為 y = (x+5/6)e(-x)
微分方程的通解為 y = c1e^x + c2e^(2x) + (x+5/6)e(-x)
y(0) = 1, 代入通解,得 c1 + c2 + 5/6 = 1
y' = c1e^x + 2c2e^(2x) + (1/6-x)e(-x)
將 y'(0) = 0 代入得 c1 + 2c2 + 1/6 = 0
聯立解得 c1 = 1/2, c2 = -1/3,
所求特解為 y = (1/2)e^x - (1/3)e^(2x) + (x+5/6)e(-x)
求助兩道高數常微分方程的題
3樓:天使的星辰
(1)選c
dy/dx=2x
dy=2xdx 兩邊積分得:
y=x^2+c
代入 )∫(0到1)ydx=)∫(0到1)(x^2+c)dx=1/3+c=2
c=5/3
所以y=x^2+5/3
(2)a
高數:常微分方程--高階微分方程,有三道題,求大神幫忙解答!
4樓:匿名使用者
只有第二題比較有難度,你需要從三個解去推測原本微分方程的形式。
這樣吧,我先給出完整的解答,再比對一下你那個的,看看有什麼不同第一題:
第二題:
第三題:
答案在**上,點選可放大。
不懂請追問,滿意請及時採納,謝謝☆⌒_⌒☆
5樓:神的味噌汁世界
^第一題的問題:f(1)=2隱含著的條件是,f'(1)=2
所以,f(x)=c1x^2+c2,f‘(x)=2c1x
c1=c2=1
第二題。你已經得出了y''-y'-2y=f(x),將y=xe^x帶入即可
f(x)=(d/dx-2)(d/dx+1)xe^x=e^x(d/dx-1)(d/dx+2)x=(1-2x)e^x
第三題。直到y''+y=-sinx都是正確的,我就不按你的做法繼續了
先解方程:y''+y=-e^(ix)
y=c1sinx+c2cosx+i/2xe^(ix)
則原方程解為y的虛部
y=c1sinx+c2cosx+1/2xcosx
f(0)=0
f'(0)=1
y(0)=c2=0
y'(0)=c1+1/2=1,c1=1/2
y=1/2sinx+1/2xcosx
常係數線性微分方程的求解有一些計算技巧,但是詳講起來篇幅較長
常數的問題,你看原式
f(x)=sinx+∫(0,x) tf(t)dt -x∫(0,x) f(t)dt
取x=0
f(0)=sin0+∫(0,0) tf(t)dt -0∫(0,0) f(t)dt=0
就是這樣推常數
求解兩道高數題(微積分方面)
6樓:熊貓咪咪
第一題:提出一個x,然後對餘下的級數用求導法,為等比級數;
第二題:典型的常係數非齊次線性微分方程,用設解法求特解,最後齊次通解加非齊次特解即可
7樓:匿名使用者
這很簡單啊。你**不懂?
高數:常微分方程題目,英文,重賞,謝謝!
8樓:匿名使用者
我目前只能回答(a)
其實仔細讀一下(a)問中自帶的提示,這一問還是比較簡單的,(a)的提示是:要證明w構成向量空間,需證明該空間‘對加法和標量倍乘的封閉性’。
那麼(1)只需要從滿足方程(*)的解中任取兩個(即w中的元素),如y1和y2,取其和y1+y2, 並代入方程(*)的左邊替換掉(*)中原來的y,由於方程是線性的,可知代入y1+y2後,方程仍然等於0,即說明y1+y2仍在集合w中,說明集合w對其中元素(即函式)的加法是封閉的。
(2)仍然取w中的元素y,乘以標量係數k,得到ky,代入方程(*),藉助方程線性可知ky仍然滿足方程(*),即ky仍然在w中,說明w對其中元素的標量倍乘也封閉。
此處特別的,當k=0時,說明w中包含0元素,即包含一‘原點’。這也是空間定義的一個必要條件。
9樓:為了生活奮鬥不止
你的a是包含t的函式,求其原函式不能只乘以t ,所以這種寫法求不出來,應該用微分方程求。
兩道高數題
1 f 0 lim x 0 f x f 0 x 因為f x 是偶函式,所以f x f x 所以 f 0 lim x 0 f x f 0 x lim x 0 f x f 0 x,令t x,則 f 0 lim t 0 f t f 0 t lim t 0 f t f 0 t f 0 所以,f 0 0 2 ...
求助兩道英語題,問兩道英語題!!急需求助!!
1 b應該不錯,鬼子就是這麼講的。2 c。當他做白日夢的時候,1 d 這個結構是對的 2 c 後可接從句 問兩道英語題!急需求助!好吧,第一個不知道,第二個 i m not in the least tired.in這是處在某種狀態,the least最少,即一點,原句我沒有 不 一點累,這是中文的...
幫我看看這兩道數學題謝謝,幫我看看這兩道數學題 謝謝
囩惔風輕 1 2 2 4,3 2 9 4 2 16,5 2 25.100 2 10000 2 n n 1 10 11 110 第一個問題 規律 等號左邊所有數中最大數的平方等於右邊 2 2 4 3 2 9,4 2 16 因此,答案是100 2 10000 第二個問題 規律 等號左邊的數字的個數乘以這...