初三幾何題求解答,求數學高手,初三幾何奧賽題,求數學高手,求解求過程

時間 2022-03-01 09:35:29

1樓:虹兒園地

(1)∵cd平分∠acb,cf平分外角∠acg ∴∠acd+∠acf=1/2∠acb+1/2∠acg=90°

∴de=ef=ce

(2)由(1)知 ae=ef=ec=de ∴四邊形adfc為平行四邊形

∵∠fcd=∠acd+∠acf=90° ∴四邊形adcf為矩形

2樓:匿名使用者

1.∵ad=db,cd平分∠acb,

∴ca=cb ,cd垂直ab (逆用三線合一)∴∠ acd=∠bcd

∵cf平分外角∠acg,∠acg=∠b+∠bac∴∠acf=∠bac

又∵ea=ec,∠aed=∠cef

∴δaed≌δcef

∴de=ef,

2.∵ea=ec,和由(1)知de=ef,cd垂直ab∴四邊形adcf是平行四邊形是矩形。

3樓:星星辰

點d、e為ab、ac中點 說明ad=½ab ae=½ac 又有一個∠bac是公共角 那麼△ade與△abc相似 根據相似定理 可得 de=½bc 且 de 與bc平行 ∴ ∠edc=∠dcb(內錯角相等) ∵cd平分∠acb ∴∠ecd=∠dcb ∴ ∠edc=∠ecd ∴de=ec 又∵ cd平分∠acb,cf平分外角∠acg 所以∴∠acd+∠acf=∠dcf=90° 又∵ ∠dfc+∠fdc=∠acd+∠acf,∠edc=∠ecd ∴ ∠dfc=∠acf ∴ ef=ec ∴ de=ef

∵de=ef e為ac的中點 ae=ec ∴ ec=de=ef=ae

由ae=de得出 ∠ead=∠ade ∵∠edc=∠ecd 所以∠ead+∠ade +∠edc+∠ecd=2∠ade +2∠edc=180° ∴∠ade +∠edc=90°=∠adc 同理 ∠afc=90°

∵∠dcf=∠adc =∠afc=90°∴ 四邊形adcf為矩形

初三幾何奧賽題,求數學高手,求解求過程

4樓:

結果要點:dic相似於cig,相似比等於兩個正方形的邊長之比

要證的兩個角相等,加起來為180度,所以兩個角各為90度

dic相似於cig的證明過程可以參考:證明acg相似於fcd的過程(兩個證明過程差不多)

求解幾何題。題目如下。

5樓:我是你港姐呀

s△abc=1/2×bc×ad=1/2×ab×ce又∵ab=2cm,bc=4cm

代入,得

ad:ce=1:2

△abc的高ad與ce的比=1:2

s△abc面積=1/2×ab×ce=1/2×bc×ad∴2ce=4ad

∴ad:ce=2:4=1:2

初三幾何多結論題,求數學高手相助。最好在今天解完,謝了。

一道數學幾何題~求數學高手解答~~**等!!急求!

6樓:飄渺的綠夢

過e作ef⊥ob交ob於f,過d作dg⊥oa交oa於g。

∵dc⊥fc、ef⊥fc、ed∥fc,∴cdef是矩形,∴ef=dc=2。

∵∠eof=30°、ef⊥of、ef=2,∴oe=4。

∵d在∠cog的平分線上,又dc⊥oc、dg⊥og,∴dg=dc=2。

∴△oed的面積=(1/2)oe×dg=(1/2)×4×2=4。

7樓:匿名使用者

過點d作df⊥oa,垂足為點f

因為 od平分∠aob dc⊥ob df⊥oa所以 df=dc=2

又因為 de//ob

所以 角fed=角aob=30

所以 ed=2*2=4

所以 △oed的面積=4*2*1/2=4

8樓:舞話

作ef平行於dc交oc於f點

od平分∠aob,de//ob ∠aob=30°∴∠edo=∠bod=∠eod=15

△oed為等腰三角形

在rt△oef中 ∠aob=30°

dc=2=ef

(30°所對的直角邊是斜邊的一半)oe=2ef=4作e點垂直於od於點g

∴在rt△oeg中 sin15=eg/oe=eg/4=(√6-√2)/4

解得eg=√6-√2

c0s15=og/oe=og/4=(√6+√2)/4og==√6+√2

∴s△oed=2og*eg/2=4

9樓:匿名使用者

是∠aob=30°還是∠dob=30°?

初三數學幾何試題,初三幾何數學題

藺艾盧靖 因為acd三點在圓上且角acb為直角,所以ad是直徑,又因ad為角平分線,所以三角型adc全等於ade.所以ac等於ae 在芥子園打羽毛球的呂蒙 6 x x 4 第2行是中線公式,或者平行四邊形四邊的平方和等於兩條對角線的平方和,這個曾經是初中幾何第1冊複習題,結論很好記,運用這個結論,解...

初三數學題,求高手解答,謝謝,初三數學題,求高手解答,謝謝了!

留住萬羅 1.解 設二次函式的解析式為 y ax 2 bx c 1,1 2,4 0,4 三點帶入方程解得 a 1,b 6,c 4 所以二次函式的解析式為 y y x 2 6x 4對稱軸x b 2a 3 2.解 由題意可知 拋物線經過a 4,0 b 3,0 所以可設二次函式的解析式為 y a x 4 ...

初三幾何題目,初三 幾何題

我看沒看懂圖 拿個好看點的圖吧 總算看到圖了。長度沒有變化,de始終等於1 過p作pg bc交ac於g,則apg是正三角形,所以ag x,pg x 因為pg x,pg bc,可以證明得pgd與qcd全等。所以cd gd 2 x 2 1 x 2所以de 2 x 2 1 x 2 1 過p作pg bc交直...