任意給出不同的自然數,其中至少有兩個數的差是4的倍數,你能說出其中的道理嗎

時間 2021-09-02 07:13:46

1樓:言若谷汲錦

最小的5個自然數,是0、1、2、3、4,這樣就已經存在給定的題目條件了。再往大走,任意5個數字中,最大的數與最小數的差也不會小於4。自然數中的其他數字都可以看做是這5個基本數字再加上某數字得出來的。

2樓:孫老泉

最小跨度就是4啊

一個自然數除以4的餘數只能是0,1,2,3。如果有2個自然數除以4的餘數相同,那麼這兩個自然數的差就是4的倍數。

一個自然數除以4的餘數可能是0,1,2,3,所以,把這4種情況看做時個抽屜,把任意5個不相同的自然數看做5個元素,再根據抽屜原理,必有一個抽屜中至少有2個數,而這兩個數的餘數是相同的,它們的差一定是4的倍數。所以,任意5個不相同的自然數,其中至少有兩個數的差是4的倍數。

3樓:oc夏花丶

5個不同的自然數,那麼把他們都除以4,會得到5個餘數。

一個自然數與4相除,得到的餘數的可能性為0,1,2或3 共4種可能

那麼在5個餘數中,至少有2個餘數是相同的,即至少有兩個數的差是4的倍數。

4樓:匿名使用者

設有其相互差均不為4的倍數的abcd,當且僅當abcd分別屬於4k,4k+1,4k+2,4k+3的形式時滿足條件;現在引入第五個數e,e作為自然數也必然符合這四種形式之一,所以e必然與abcd之一的差是4的倍數。故任意給出5個不同的自然數,其中至少有兩個數的差是4的倍數。證畢。

5樓:

因為所有自然數除以4的結果 有整除 餘1 餘2 餘3

5個自然數中必然有兩個是同一種結果 比如說都餘1 那麼相減就能被4整除

任意5個不相同的自然數,其中至少有2個數的差是4的倍數,這是為什麼?(比如因為寫算式,所以什麼)

6樓:布拉不拉布拉

任意五個自然數都可以用4n、4n+1、4n+2、4n+3、4n+4來表示(原因是任意自然數除以4的餘數只有0、1、2、3四種情況),因此在五個數字中一定存在4n+4-4n的情況,這裡得到的結果一定是4的倍數。

7樓:yzwb我愛我家

解:因為任意一個自然數除以4的餘數有4種情況:

餘數是0(整除)

餘數是1

餘數是2

餘數是3

根據抽屜原理(及手氣最差原則),5個數中至少兩個數的餘數相同,令相同的餘數是a,這兩個數分別是4m+a和4n+a,其中m>n,且m和n都是自然數

則這兩個數的差是

(4m+a)-(4n+a)

=4m-4n

=4(m-n)

4(m-n)是4的倍數,所以這兩個除以4餘數相同的數的差是4的倍數所以任意5個不相同的自然數,其中至少有2個數的差是4的倍數

希望對你有幫助

祝你開心

任意5個不相同的自然數,其中至少有兩個數的差是4的倍數,這是為什麼?

8樓:謇南後濡霈

結論是成立的,你的例子中,9-5=4,是4的倍數。

證明:任一自然數,被

4除的餘數只可能是:0、1、2、3

四個之一,

由抽屜原理,任意

5個不相同的自然數中,一定至少有兩個數,它們被4除的餘數相同,

那麼這兩個數的差就是

4的倍數。

任意寫6個不同的自然數,其中至少有兩數的差是5的倍數,為什麼

9樓:你愛我媽呀

證明:抄

∵任意自

然數襲除以5餘數只有0、bai1、2、3、4這5種情況。

分別du構造為5個抽zhi

屜:[0],

dao[1],[2],[3],[4]。

當有6個不同的自然數,將這6個不同自然數分別除以5,肯定至少有2個數的餘數是一樣的,餘數是一樣的也就是說餘數相減為0。

所以,任意寫出6個不同的自然數,至少有一組兩個數的差是5的倍數。

10樓:匿名使用者

bai任意寫6個不同的自然數,其du

中至少有兩zhi數的差是

dao5的倍數。

內證明∵任意自然數容除以5餘數只有0、1、2、3、4這5種情況個,不妨分別構造為5個抽屜:

[0],[1],[2],[3],[4]

當有6個不同的自然數,將這6個不同自然數分別除以5,肯定至少有2個數的餘數是一樣的,餘數是一樣的也就是說餘數相減為0,

所以,任意寫出6個不同的自然數,至少有一組兩個數的差是5的倍數.

11樓:匿名使用者

抽屜原理 證明∵任bai意自然數除以5餘數du只有0、zhi1、2、3、4這5種情況個,

不妨分別dao構造為內5個抽屜:

[0],[1],[2],[3],[4]

當有6個不同容

的自然數,將這6個不同自然數分別除以5,肯定至少有2個數的餘數是一樣的,餘數是一樣的也就是說餘數相減為0,

所以,任意寫出6個不同的自然數,至少有一組兩個數的差是5的倍數.

12樓:匿名使用者

咯哦了咯啦咯啦7頭虐

任意5個不同的自然數,其中至少有兩個數的差是4的倍數,為什麼?

13樓:戲凝靜

一個數被4除,餘數只能是0,1,2,3四種情況,取5個數說明至少有2個數除以4餘數相同,而這兩個數的差就是4的倍數。

14樓:羅景光

5個不同的自然數中,假設最小的數用x表示,那麼其他四個數必定可以用x+n和x+2m兩種形式表示,(其中n和m是分別比1和2大的奇數和偶數)(因為自然數中的數不是奇數就是偶數)。所以這五個數中至少可以找到兩個數的差(x+2m)-x=2m.。而2m總是4的倍數。

15樓:溫曉莉瀧珏

任一自然數除以4的餘數只能是0、1、

2、3,所以所有自然數可以表示為4n,4n+1,4n+2,4n+3共4類,當有5個不同的自然數時,一定有二個數除以4的餘數相同,那麼這兩個數的差一定是4的倍數。

16樓:但莘嵇迎秋

兩個整數a、b,它們除以自然數m的餘數相同,那麼它們的差a-b是m的倍數.根據這個性質,本題只需證明這5個自然數中有2個自然數,它們除以4的餘數相同.我們可以把所有自然數按被4除所得的4種不同的餘數0、1、2、3分成4類.

也就是4個抽屜.任取5個自然數,根據抽屜原理,必有兩個數在同一個抽屜中,也就是它們除以4的餘數相同,因此這兩個數的差一定是5的倍數。

任意5個不同的自然數,其中至少有兩個數的差是4的倍數,為什麼?(注:用抽屜原理解有算式米??)

17樓:長江結寒冰

這是一道六年級的“抽屜原理”的題。

思路:1、一個自然數除以4的餘數只能是:0、1、2、3,所以,把這4種情況看做是4個抽屜,把任意5個不同的自然數看做5個元素。

2、在根據抽屜原理,必有一個抽屜中有2個數,而這兩個數的餘數是相同的,它們得差一定是4的倍數。

3、所以,任意5個不同的自然數,其中至少有兩個數的差是4的倍數。

18樓:匿名使用者

一個數除以4的餘數有0 1 2 3四種情況,將其看成4個抽屜。。。。

任意四個自然數要放進這4個抽屜裡面,至少有兩個自然數要被放在同一個抽屜裡。。。

同一個抽屜的兩個自然數之差必是4的倍數。。。。因為他們除以4的餘數相同,相減之後餘數都消掉。。。,所以差除以4的餘數肯定是0,即是4的倍數

任意5個不相同的自然數,其中至少有兩個數的差是4的倍數,這是為什麼?(要算式)

19樓:匿名使用者

用組合數學的鴿籠原理,任意自然數用4去除,其餘數為4個,0,1,2,3之一,任意5個自然數分別用4去除,一定有兩個數餘數相同,這兩個數之差必是4的倍數.

設x,y用4去除餘數相同均為r,x=4k1+r,y=4k2+r,兩式相減得

x-y=4(k1-k2)

20樓:匿名使用者

用同餘的知識來解答。一個數被4除的餘數有4種情況,餘數為0,1,2,3.因為有5個數,所以至少有兩個數餘數相同,相減就能被4整除

21樓:叢聰慕谷夢

一個自然數除以4有兩種情況:一是整除餘數

為0,二是有餘數1、2、3.如果有2個自然數除以4的餘數相同,那麼這兩個自然數的差就是4的倍數.

把0、1、2、3這四種情況看作4個抽屜,把5個不同自然數看作5個蘋果,必定有一個抽屜裡至少有2個數,而這兩個數的餘數是相同的,它們的差一定是4的倍數.所以任意5個不相同的自然數,其中至少有兩個數的差是4的倍數.

22樓:熊淼渾依

自然數是非負整數,其除以4,必然餘0,1,2或3(0/4=0)

根據抽屜原理,5個數中至少兩個數的餘數相同,假設餘數同為1不妨令這兩數為4m+1和4n+1(m,n都是自然數且m>n≥0)相減得4(m-n)

其比為4的倍數

23樓:祝可麥俠騫

為方便假設第一個數為0 其餘四個數為j k m n與第一個數的差為jkmn

如果jkmn中有任意一個數是4的倍數 命題成立如果全部是4的倍數 則另jkmn分別除4餘abcdabcd只有1 2 3 三種取值必然至少有兩個數餘數一樣 那麼這兩個數的差是4的倍數 命題成立

24樓:溫婭闢碧白

一個自然數除以4餘數可能是0、1、2、3,根據抽屜原理,任意5個不相同的自然數必有兩個除以4有相同餘數,那麼這兩個數的差就是4的倍數。

25樓:賓幻桃壽爾

任意5個不相同的自然

數,其中至少有兩個數的差是4的倍數,這是為什麼?

5個不同的自然數,那麼把他們都除以4,會得到5個餘數.

一個自然數與4相除,得到的餘數的可能性為0,1,2或3共4種可能

那麼在5個餘數中,至少有2個餘數是相同的,即至少有兩個數的差是4的倍數.

26樓:高艾祈弘致

用把(5個自然數)看作分放的物體,

把(自然數被4除的餘數情況)看作抽屜,

即5個物體,4個抽屜【被4除餘0、1、2、3這4種情況】假設(每個抽屜放1個物體,則還有1個物體無法放置)所以(必有至少1個抽屜裡有2個物體)

即5個自然數必有至少2個自然數被4除的餘數相同。這兩個數的差必是4的倍數。

任意不相同的自然數,其中至少有兩個數的差是5的倍數,這是

姚佑叢詩丹 因為任意一個自然數除以6,得到的餘數只可能是0 1 2 3 4 5六種情況,所以,在任意7個不相同的自然數中,至少會有兩個數的餘數相同。 6個數,都除以5 算餘數,就有6個餘數 而某個數除以5 的餘數只可能是0,1,2,3,4 這就相當於把6個球放進5個格子,至少有1個格子有2個球,也就...

數學題 任意給出不同的自然數,其中一定有數的差是偶數。你認為對嗎?請說明理由

首先3個數有以下情況 一 3個奇數 其中2數之差都為偶數 二 3個偶數 其中2數之差都為偶數 三 1奇2偶 2偶數之差是偶數 四 2奇1偶 2奇數之差是偶數 所以這三個數中,其中2數之差必定有1個是偶數是對的。題型 抽屜原理。1 將任意給出3個不同的自然數看成蘋果,將自然數的 奇,偶 看成抽屜,2 ...

任意寫出不同的非0的自然數,至少能選出兩個數,讓這兩個數的差正好是2的倍數。為什麼

3個不同的非0自然數,非奇即偶,有下面幾種情況 都為奇數 都為偶數 1奇2偶 1偶2奇 奇數 奇數 偶數 偶數 偶數 偶數 所以肯定至少能選出兩個數,這兩個數的差是偶數,也即是2的倍數覺得對的就看,還要頂一下。覺得不對的就不要抄。抄了,我詛咒你。 奇怪的世界 答 因為任何一個自然數被2除,餘數只有0...