已知微分方程的通解怎麼求微分方程

時間 2021-08-30 11:04:04

1樓:匿名使用者

微分方程的解通常是一個函式表示式y=f(x),(含一個或多個待定常數,由初始條件確定)。

例如:其解為:

其中c是待定常數;

如果知道

則可推出c=1,而可知 y=-\cos x+1。

一階線性常微分方程

對於一階線性常微分方程,常用的方法是常數變易法:

對於方程:y'+p(x)y+q(x)=0,可知其通解:

然後將這個通解代回到原式中,即可求出c(x)的值。

二階常係數齊次常微分方程

對於二階常係數齊次常微分方程,常用方法是求出其特徵方程的解

對於方程:

可知其通解:

其特徵方程:

根據其特徵方程,判斷根的分佈情況,然後得到方程的通解

一般的通解形式為:若則有

若則有在共軛複數根的情況下:

r=α±βi

擴充套件資料

一階微分方程的普遍形式

一般形式:f(x,y,y')=0

標準形式:y'=f(x,y)

主要的一階微分方程的具體形式

約束條件

微分方程的約束條件是指其解需符合的條件,依常微分方程及偏微分方程的不同,有不同的約束條件。

常微分方程常見的約束條件是函式在特定點的值,若是高階的微分方程,會加上其各階導數的值,有這類約束條件的常微分方程稱為初值問題。

若是二階的常微分方程,也可能會指定函式在二個特定點的值,此時的問題即為邊界值問題。若邊界條件指定二點數值,稱為狄利克雷邊界條件(第一類邊值條件),此外也有指定二個特定點上導數的邊界條件,稱為諾伊曼邊界條件(第二類邊值條件)等。

偏微分方程常見的問題以邊界值問題為主,不過邊界條件則是指定一特定超曲面的值或導數需符定特定條件。

唯一性存在性是指給定一微分方程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。

針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理 [4]  則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

2樓:生叡馮玉

答:求導!如:

1.x^2-xy+y^2=c等式兩邊對x求導:2x-y-x(dy/dx)+2y(dy/dx)=0故dy/dx=(2x-y)/(x-2y);或寫成 2x-y-(x-2y)y′=0

若要求二階微分方程則需再求導一次:

2-y′-(1-2y′)y′+(x-2y)y〃=02.e^(-ay)=c1x+c2

-ay′e^(-ay)=c₁(一階微分方程)-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二階微分方程)

求微分方程的通解yyy 2 ,求微分方程的通解yy y 2

令p y 則y pdp dy 代入方程得 ypdp dy p 1 0 ypdp dy p 1 pdp p 1 dy y d p p 1 2dy y 積分 ln p 1 2ln y 2lnc得 p 1 cy 即y cy 1 d cy cy 1 cdx 積分 ln cy cy 1 cx c1微分方程指含...

求齊次型微分方程的通解,齊次微分方程求通解這個是怎麼求的

薇我信 1 令y xt,則y xt t 代入原方程,得y y x ln y x xt t tlnt xt t lnt 1 dt t lnt 1 dx x d lnt 1 lnt 1 dx x ln lnt 1 ln x ln c c是積分常數 lnt 1 cx lnt cx 1 ln y x cx ...

三階常係數微分方程的通解怎麼求,微分方程的通解怎麼求?

關鍵他是我孫子 常係數線性微分方程 y 2y y 2y 0,對應的特徵方程為 3 2 2 2 0,將 化簡得 2 1 2 0,求得方程 的特徵根分別為 1 2,2 i,於是方程 的基本解組為 e2x,cosx,sinx,從而方程 的通解為 y x c1e2x c2cosx c3sinx,其中c1,c...