高中數學複數的運算,高中數學複數怎麼算?

時間 2021-08-14 13:16:50

1樓:百度文庫精選

內容來自使用者:hai yan

複數知識點|考試要求|具體要求|考察頻率|

複數的概念|a|瞭解複數的有關概念及複數的代數表示和幾何意義.|少考|

複數的四則運算|c|掌握複數代數形式的運演算法則,能進行復數代數形式的加法、減法、乘法、除法運算.|必考|

共軛複數|a|瞭解共軛複數的概念和性質.|少考|

複數的幾何意義|b|理解複數的幾何意義.|少考|

複數的應用|a|瞭解複數的相關應用.|少考|

複數的概念​為了把數的範圍進一步擴充,人們引入了一個新的數,叫虛數單位,且規定:①;②可與實數進行四則運算,且原有的加、乘運算律仍成立.我們把集合中的數,即形如(,)的數叫做複數(complex number),其中叫做虛數單位(imaginary unit).全體複數所成的集合叫做複數集(set of complex numbers).複數通常用字母表示,即(,),這一表示形式叫做複數的代數形式(algebraic form of complex number).對於複數,都有,,其中的與分別叫做複數的實部(real part)與虛部(imaginary part).對於複數,當且僅當時,它是實數;當且僅當時,它是實數;當時,叫做虛數;當且時,叫做純虛數.​​

複數相等的充要條件在複數集中任取兩個數,(,,,),​與​​相等的充要條件是且.

複數的分類兩個共軛複數的乘積等於這個複數(或其共軛複數)模的平方,即以2.24.4.24.

2樓:匿名使用者

1.一看就知道是以1+i為圓心,半徑是1的圓

2.令a=|z-i|,則|a-2|+|a|=2,所以0<=a<=2。所以z是以i為圓心,半徑是2的閉圓盤

3樓:藍盾科技

1答:1=(z-1-i)^2

=(x-1+yi-i)^2

=((x-1)+(y-1)i)^2

=(x-1)^2-(y-1)^2+2(x-1)(y-1)i推出:2(x-1)(y-1)i=1-(x-1)^2+(y-1)^2,兩邊平方得:

-4((x-1)(y-1))^2=(1-(x-1)^2+(y-1)^2)^2

左邊小於等於0,右邊大於等於0,

所以(x-1)(y-1)=0

且1-(x-1)^2+(y-1)^2=0;

因為(x-1)^2=1+(y-1)^2>0,所以y-1=0,(x-1)^2=1

得到x=0或者2,y=1;

所以z的模取值範圍為1或(根號5)。

高中數學複數怎麼算?

4樓:匿名使用者

高中數學複數運演算法則

加減法加法法則

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,

即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則

複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。

2乘除法

乘法法則

規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。 除法法則

複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.

所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi

∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi.

由複數相等定義可知 cx-dy=a,dx+cy=b

解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²)

於是有:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²)

②利用共軛複數將分母實數化得(見右圖):

點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化.

把這種方法叫做分母實數化法。

怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法

複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證.

用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理.

1.用於證三角形為正三角形

典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

高中數學複數怎麼算

5樓:匿名使用者

加減法 加法法則 複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律, 即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則 複數的減法按照以下規定的法則進行:

設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。 2乘除法 乘法法則 規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。

兩個複數的積仍然是一個複數。 除法法則 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:

可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi 分母有理化 ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由複數相等定義可知 cx-dy=a,dx+cy=b 解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²) 於是有:

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²) ②利用共軛複數將分母實數化得(見右圖): 點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.

所以可以分母實數化. 把這種方法叫做分母實數化法。 怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法 複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證. 用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理. 1.

用於證三角形為正三角形 典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

證明思路分析 以三角形的相重合的外心(重心),為原點o建立起複平面上的直角座標系.設321,,zzz表示三角形的三個頂點,其對應的複數是.,,321zzz因o為外心,故,||||||321rzzz又o為重心。

6樓:匿名使用者

法則加減法

加法法則

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,

即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則

複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。

2乘除法

乘法法則

規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。 除法法則

複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.

所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi

∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi.

由複數相等定義可知 cx-dy=a,dx+cy=b

解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²)

於是有:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²)

②利用共軛複數將分母實數化得(見右圖):

點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化.

把這種方法叫做分母實數化法。

怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法

複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證.

用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理.

1.用於證三角形為正三角形

典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

高中數學複數問題he,高中數學複數怎麼算?

如果z是實數,則z 1或 1,這樣代入,求得a的值,注意a為負值 如果z為虛數,因為是實係數方程,這時方程的兩個根為共軛虛數,而z與其共軛的乘積為模的平方,即1,此時韋達定理仍然適用,故a 2 a 1 解出負根即可。注意此時需 0,還要檢驗a為負值。另外,不知你是哪個省的學生,現在複數的確不會考到這...

高中數學推導,高中數學推導

如圖,按第二定義推匯出雙曲線方程 數學32條秒殺公式 1 10 1 向量。做向量運算時可以利用物理上向量法的正交分解做,對解一些向量難題有好處。2 四面體。在三條稜兩兩垂直的四面體中,設三條稜長為abc底面的高為h,則有,1 h 2 1 a 2 1 b 2 1 c 2 3 平面方程。空間直角座標系中...

高中數學函式,高中數學函式?

晴天擺渡 1 f x 6x 2mx 2x 3x m 令f x 0,得x 0或x m 3 m 0 x m 3,f x 0,f x m 30時,f x 0,f x m 0,f x 6x 0,f x m 0 x 0,f x 0,f x 0 m 3,f x 0,f x 2 由1知,m 0時,f x 在x 0...